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Abstract

Spatial Alarms are an important class of personalized location based services

(LBSs) that are triggered by a specific location of a moving user, instead of

time. A pedestrian may plan to buy a medicine from a pharmacy while walking

through a city or a tourist may want to have the dinner at a restaurant while

taking a scenic walk at a unfamiliar place. Spatial alarms enable users to know

if a point of interest (POI) such as a pharmacy or a restaurant comes within a

specific range of the pedestrian. In this thesis, we introduce an efficient approach

to evaluate spatial alarm queries in the obstructed space. Existing work in

this area has focused mainly on the Euclidean space and road network models.

However, the movement of a pedestrian is restricted with many obstacles like

buildings, fences or vehicles. To trigger the spatial alarm for a pedestrian, an

LBS needs to continuously check whether the specific type of POI is within the

specific range of the current location of the pedestrian, which incurs high query

processing overhead. We exploit geometric properties to refine the POI and

obstacle search region in the total space and develop a technique to identify

the area, where a pedestrians movement does not need to retrieve any new POI

or obstacle from the LSP. Our approach avoids the retrieval of same POIs and

obstacles from the LSPs databases. We perform extensive experiments using

real data sets and show that our approach is significantly faster and requires

less IO than a nave approach.
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Chapter 1

Introduction

The widespread use of smart phones has led to the proliferation of a diverse

range of location based services (LBSs). An important class of LBSs are spatial

alarms that are triggered by the location of a moving user. Spatial alarm and

variants in the Euclidean space and road networks have been recently addressed

in the literature [2],[22],[18]. However, the moving path of a pedestrian is re-

stricted by obstacles like buildings, fence and vehicles on road. In this thesis,

we introduce personalized spatial alarms in the obstructed space. A pedestrian

may plan to buy a medicine from a pharmacy while walking through a city or

a tourist may want to have dinner at a restaurant while taking a scenic walk

at an unfamiliar place. Spatial alarms enable users to know a point of interest

(POI) such as a pharmacy or a restaurant comes within a specific range of the

pedestrian. It is a personalized location based service as it can vary from user

to user in terms of POI type and range. In this thesis we introduce an efficient

approach to evaluate personalized spatial alarms efficiently in the obstructed

space.

A major challenge in processing spatial alarms in real time is it requires

continuous evaluation with respect to the changed location of a moving user.

Specifically, to trigger the spatial alarm for a pedestrian, an LBS needs to con-

tinuously check whether the specific type of POI is within the specific range

of the current location of the pedestrian, which incurs high query processing

overhead. Our approach to evaluate spatial alarm is simple and effective. We

exploit geometric properties to refine the POI and obstacle search region in the

total space and develop a technique to identify the area, i.e., reliable region,
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where a pedestrian’s movement does not need to retrieve any new POI or ob-

stacle from the LSP. Our approach keeps track of the area, i.e., known region,

where POIs and obstacles are already retrieved and thereby avoids the retrieval

of same POIs and obstacles from the LSPs databases.

We aim to minimize device wake-ups and duplicate data transfer between

client and server. Thus, we have formulated a safe region. As long as the user

is within this region, no computation is needed to give the answer. Thus the

safe region is a region in which the active alarms of a client remain unchanged.

With the help of these three regions we provide an efficient approach to evaluate

spatial alarms. It is noteworthy that spatial alarms are quite dissimilar to spatial

range queries [30], [24],[23]. Spatial alarms are based on a fixed location thus

applying the techniques that are used in answering spatial range queries is both

inefficient and wasteful for the two dominating reasons: Firstly, in a spatial

range continuous re-evaluation of her location is needed in case of a mobile

user. In contrast, spatial alarms need only be re-evaluated when the user is

approaching a specific location. Secondly, in spatial range queries information

about POIs in users vicinity is always important, whereas in spatial alarms,

the information about POIs are relevant only if they are within certain range

of the users. It is quite clear that applying spatial range query techniques in

evaluating spatial alarms is going to result in wastage of resources. If we start

to evaluate spatial alarms as soon as the user is on the move even if the user is

far away from her desired location our efforts will be futile.

1.1 Problem Setup

Existing research has categorized spatial alarms into three types: Public, Shared

and Private.

Public alarms are alarms which are active for every user within the system, such

as an alarm must be sent to everyone within 100 meters of a building on fire.

Private alarms are user defined alarms which can be viewed by the user, such as

a user might set an alarm to alert her if she is within 100 meters of her favorite

coffee shop.

Shared alarms are shared between specific groups of people. In the previous
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example if a user chooses to share the alarm for the coffee shop with some of

her friends it becomes a shared spatial alarm.

In this thesis we are considering private alarms only.

In [2] spatial alarms has been categorized into three different types:

• Moving subscriber with static target

• Static subscriber with moving target

• Moving subscriber with moving target

In this thesis we are only considering the first type, that is Moving subscriber

with Static target.

In [22] spatial alarm region have been approximated by rectangular bounding

box, in our approach we are considering the spatial alarm region as a circle with

radius r.

Obstructed Space Path Problem [5] denotes the problem of finding the short-

est route between two query-points in Obstructed Space where non-intersecting

2D polygons represent obstacles and where the route does not traverse through

any obstacles. The difference between obstructed distance and euclidean dis-

tance is clear from the figure 1.1. The length of the Obstructed route between

points a and b is called the Obstructed Distance between a and b, denoted by

disto(a, b).

A Spatial Alarm Query in Obstructed Space is formally defined as

follows: Given a moving query point q and a range r for an alarm, a Spatial

Alarm Query returns ∀pi ∈ P = {p1, p2, p3...pn} which have disto(pi, q) < r

1.2 Preliminaries

Spatial alarms are location-based, user-defined triggers which will possibly shape

the future mobile application computations. They are distinct from spatial

range query and do not need immediate evaluation after the user has activated

them. The spatial alarm evaluation strategies are judged based on two features,
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Figure 1.1: Obstructed Distance

High accuracy and High system scalability. High accuracy refers to the quality

that guaranties no alarms are missed. And High scalability is the feature that

ensures that the system can adapt to a large number of spatial alarms.

In this thesis, We propose a novel approach to evaluate spatial alarms in ob-

structed space which ensures both High accuracy and High scalability.

We define three different type of regions: Known Region,Reliable Region and

Safe Region

Known Region:

The region within which all POIs (alarms) and obstacles

are known to the client. We define two different known regions for the POIs and

the obstacles. Both of the known regions are represented by a parabola whose

focus point is the users location q, with the equation y2 = 4ax where a = mr

which is bounded by a straight line.
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Figure 1.2: Definition of Regions

Reliable Region:

Within which region, no further query to the server has

to be done to compute a consistent set of answers, that is termed as a reli-

able region. The reliable region is also a parabolic region bounded by a straight

line,where each bounding point of the parabolic curve is at a distance r from the

known regions parabolic curve. ∀pi = (x, y) in the known region, ∀pj = (xr, yr)

in the reliable region, distE(pi, pj) ≥ r By this definition no further queries to

the server has to be done to compute a consistent set of answers. Because,

for any q = pj distE(q, pj) ≥ r where pj is a point on the boundary of the reli-

able region. And for all other points pi inside the reliable region distE(q, pi) > r

Safe Region:

A safe region is the region located inside reliable region within

which the answer set of POIs remains unchanged for a moving client. We will

denote the radius of the safe region as rsafe. Given the user’s previous location

P1 and the current location P2, if (P1 − P2) < rsafe, then no recalculation is
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needed to compute the answer. If the safe region surpasses the reliable region

at some points.

Table 1.1: Symbol Table

Symbols Meaning

P A set of POIs

O A set of Obstacles

q The location of user

r The alarming range

VG A visibility Graph

distE(p,q) The euclidean distance between points p and q

distO(p,q) The obstructed distance between points p and q

rsafe The radius of safe region

m A real number in the range [2,∞)

n A real number in the range [1,∞)

θi The angle between consecutive path segments

S The users path history as a set of straight lines

(mi, ci, li) A line with slope mi, intercept ci and length li

The key idea of our approach is to calculate a dynamic safe region, within

which no computation has to be done to provide an accurate alarm trigger. We

will use an R-tree structure to index both obstacles and POI’s in our approach.

Our spatial alarm processing system has two different modes for efficient and

effective processing of spatial alarms,namely, Bandwidth saving mode and Com-

putational Cost Saving mode.

We assume that the system is based on a client-server architecture and the

POIs as well as the obstacles are stored using independent R-trees at the server.

We also assume that all users have access to some sort of localization service

such as GPS or Wi-Fi that queries the server with the client’s pinpoint location.

Here, the client application is a thin-weight application that communicates with

the server on any specified event to retrieve necessary information about POIs

and the obstacles. We assume that the user can use any device such as smart-
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phones or PDA.

1.3 Contributions

Our approach accounts for both accuracy and efficiency by focusing on (1)

Not missing any alarms in user’s proximity (2) Avoiding multiple retrieval of

duplicate data from the database (3) Minimizing communication between the

LSP and client. In summary the our main contributions are:

• We introduce spatial alarm queries in the obstructed space for mobile

users.

• We exploit geometric properties to refine the POI and obstacle search

region in the total space and develop a technique for the client device to

identify the area where a pedestrians movement does not need to retrieve

any POI or obstacle from the LSP.

• We provide an algorithm to calculate a dynamically changing region to

accurately evaluate spatial alarm queries without any computation.

• We provide an extensive experimental analysis to compare the efficiency of

our approach with other naive approaches based on different parameters.

1.4 Thesis Organization

The next chapters are organized as follows. In Chapter 2, related works are

discussed. In Chapters 3 and 4, we present a naive approach and our approach,

respectively, to evaluate spatial alarm queries in the obstructed space. Chap-

ter 5 shows the experimental results for our proposed algorithm. Finally, in

Chapter 6, we conclude with future research directions.
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Chapter 2

Related Works

In this chapter, we give a description of previous works related to this thesis.

Spatial alarm processing technique in Road Network and Euclidean Space has

been extensively studied in recent years.In this chapter, we first show the related

works on Spatial Alarm queries in Road Networks in 2.1,then we show the

related works on different queries in the Obstructed Space in the section 2.2

finally in 2.3 we show the effectiveness of R-tree as an data structure.

2.1 Spatial Alarm Queries

Extensive research has been performed and various effective algorithms have

been proposed [18],[22],[2],[3],[17],[6],[16],[21] to process spatial alarms in Eu-

clidean space and road network in recent years. Euclidean space considers the

straight line distance between two points irrespective of obstacles between them

on the other hand in road networks navigation is limited along predefined roads.

Again, comprehensive research [7] has been conducted to make spatial alarm

evaluation energy-efficient and effective in road networks.

However, to the best of our knowledge no research work has yet been published

on the topic of spatial alarms in the obstructed space. In this section we present

the related research work in the computation of spatial alarms.

In [18] the authors argue that spatial alarm queries are best approximated
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by road network scenarios as the clients movement is more likely to follow some

specific road network. They show that the road network distance-based spatial

alarm is best modeled using road network distance such as segment length-

based an travel time-based distance. in their opinion, a road network spatial

alarm is a star-like subgraph centered at the alarm target. [18] introduced road

network based spatial alarm and provided several optimization techniques to

make spatial alarm computation in road network efficient.

Murugappan et al. in [22] have studied a middleware architecture for energy

efficient processing of spatial alarms on mobile clients, while maintaining low

computation and storage costs. Their research on spatial alarms provides two

systematic methods for minimizing energy consumption on mobile clients. They

introduce the concept of safe distance the number of unnecessary mobile client

wakeups for spatial alarm evaluation.their approach enables mobile clients to

sleep for longer intervals of time in the presence of active spatial alarms. Mu-

rugappan et.al have studied the computation of spatial alarm using a middle

ware architecture in the road networks.

In [2] a safe region based approach has been introduced to effectively com-

pute spatial alarms. The authors argue that, the conventional computation of

spatial alarm queries using server centric architecture can be improved upon

by introducing a distributed safe region based approach. The safe region based

approach delegates some of the computational overhead to the client and results

in optimal usage of resources. In this thesis , we adapt the concept of safe region

and the distributed architecture in processing spatial alarms. Bamba et al. in

[2] have given three different approaches to compute the safe region. However,

none of them are tailored to be used in the obstructed space.

In [7] an efficient indexing structure to process spatial alarms is discussed.

In each of the above mentioned papers, efficient and effective techniques have

been studied to process spatial alarm queries in road networks and euclidean

space. However, to the best of our knowledge, no research work has yet been

published for the computation of spatial alarms in the obstructed space.
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2.2 Spatial Queries in the Obstucted Space

In this section we study various spatial queries that have been extensively re-

searched in the obstructed space. Some of these queries have very little in

common with spatial alarm queries, nevertheless we study the obstructed dis-

tance computation techniques used in them.

Papadias et al. in [35] have provided approaches to compute several impor-

tant spatial alarm queries in the obstructed space, which include range search,

nearest neighbors [12],[13], e-distance joins and closest pairs. They use R-tree

for indexing both data points and obstacles.

nearest neighbors queries have been studied in the obstructed space in [12],[13],[34]

and spatial clustering in obstructed space has been researched in [9],[8],[32],

and and [31] Multiple research works [10], [11] has been done on reverse nearest

neighbour queries. Zhange et al in [11] have introduced reverse nearest neigh-

bour queries in the obstructed space in the obstructed space. Given a datapoint

q, a reverse nearest neighbor finds all the points/objects that have q as their

nearest neighbor. In [11] the authors have introduced the obstructed reverse

nearest neighbour. They use effective pruning heuristics (via introducing a novel

boundary region concept).However, spatial alarm queries and RNN queries are

distinct from each other. A spatial alarm query returns all the points p that are

within an alarm radius r of q.It can be argued that spatial alarm queries can be

processed using RNN query solving algorithms, but it will not be as effective

and efficient as a query that is specifically tailored to handle spatial alarms.

Moving knn queries have been studied in the obstucted space in [24] and [19].

Nutanong et al. in [24] have studied moving knn queries in detail.Mknn queries

can be defined as follows, given a set of datapoints P and a moving query point

q,an MkNN query retrieves the k nearest data points of q from P. As the client

is moving the answer set may need to be recomputed as the client moves. They

have used the concept of safe region,reliable region and known region in their

paper. They use the safe region to reduce unnecessary checks for knns near the

user. They have also introduced known region and reliable region to find the

safe region for a specific location of a client. They have used a unique V* dia-

gram approach to compute knns in their paper.The V* diagram is constructed

using (k+x)th nns’ of a user.The V* diagram computes two types of safe regions
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: Safe region with respect to a data point and fixed rank region. Then both

of them are intrigated to form a intrigated safe region. Many qualities of[24]

have been adapted in [20] which is discussed next. In this thesis we also use the

terms, safe region,reliable region and known region. But our thesis is distinct

from [24] on these points

• We use the known region and reliable region not only to help compute

the safe region, but also to reduce duplicate data transfer and number of

server queries made.

• We use the concepts of these regions to efficiently compute spatial alarms.

Here we would like to point out, that although spatial alarm queries can be

solved using an extension of moving mknn queries , those extensions will

result in wastage of resources and efficiency , as they are not specifically

tailored for spatial alarms.

• We have used the above mentioned regions with respect to obstacles which

is not considered in [24]

Li et al. in [20] have proposed an algorithm to efficiently compute moving

Knn queries with respect to obstacles. However in their paper, Li et al. have

proposed a safe region based approach, so that no recomputation is needed as

long as the user is within the safe region. In [20] no predefined trajectory of

client is assumed. The algorithm proposed in [20] can be summarized as follows:

• At the start of the query the algorithm first computes a list of k+x nearest

data points of q, where the x extra data point serve as a cache to reduce

the number of safe region recomputation.

• After every movement of client the algorithm uses the obstructed safe re-

gion and the obstructed fixed-rank region to determine whether a safe re-

gion recomputation is required and which data points need to be accessed

for the recomputation.

Obstructed safe region w.r.t. datapoint is a region where the movement of

q will not cause p to be removed from the k + x nearest neighbors of q.

Obstructed fixed rank region The obstructed fixed-rank region of a list Lk+x of

k + x data points ordered ascendingly by their distances to the query point at
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qb,is a region in an obstructed space that, when q moves inside the region, the

distance rank of the data points in Lk+x to q is fixed.

In this paper they have also formulated an obstructed known region with

the help of an obstructed disk. When the query point q is at position qb and its

(k + x)th nearest data point is z, the obstructed known region of q, is defined

as a region where the obstructed distance from any point t to qb is less than or

equal to the obstructed distance of z to qb. An obstructed disk in obstructed

space is a disc where the points distances to qb are less than or equal to r.

In this paper the concept of safe region and fixed rank region have been

adapted from [24]. In this thesis we have also adapted some of our key concepts

from the same and manipulated them for using in the obstructed space. How-

ever, it is noteworthy that our approach and [20] are distinct from each other.

Apart from the obvious fact that our thesis and [20] deal with two different

type of spatial queries all together we would also like to point out two principle

differences between them:

• Firstly, we adapt the concept of known region and reliable region from

[24] in the obstructed space. In this thesis, two different known region

for POIs and Obstacles have been introduced to reduce duplicate and

frequent data retrieval from the server. Our definition of known region is

distinct from [20].

• Secondly, We have developed an efficient approach to accurately answer

the spatial alarm queries in the obstructed space by predicting the user’s

next direction of movement, a prospect that has not been considered in

[20].

In [29] an efficient approach to solve the obstructed group nearest neigh-

bour query is introduced.A GNN(Group Nearest Neighbor) query is a query

that enables a group of users to meet at a point with minimum aggregate travel

distance.

Obstructed distance computation is a inexplicable part of any query in the

obstructed space. To find the obstructed distance between two points we need

12



the visibility graph [29]. Usually, visibility graph construction is an O(n2) time

consuming algorithm. To overcome this particular hurdle, we have adapted the

approach of incrementally constructing the visibility graph used in both [29]

and [20]. In this approach only the datapoints and obstacles that are absolutely

necessary to our query is kept in the visibility graph. At first an initial visibil-

ity graph is constructed and then only the obstacles and that are relevant in

the obstructed distance computation of the active datapoint set are kept in the

visibility graph, all other obstacles are removed. This initial visbility graph is

incremented or decremented with necessary datapoints and obstacles as per our

query.

2.3 R-trees

B-tree [25] is a popular data structure that is often used in file systems and

database systems because of it’s logarithmic insertion and deletion running

times and as it’s child nodes can be accessed at the same time. However,

B-tree can not store new type of data (i.e. geometrical data, multi-dimensional

data). So Guttman [15] provided R-Tree for this task. R-tree has the following

main properties

• R-Trees represent data as a minimum bounding rectangle MBR which

enables it to store any dimensional data

• It is height balanced.

• Each node bounds it’s children. A node can have many objects in it.

• The leaves point to the actual objects which are stored on the disk. Var-

ious variations of R-tree have also been proposed in [28], [4].
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Chapter 3

Naive Solution

To compare the efficiency of our approach, we present a straightforward solution

for processing Spatial Alarms in Obstucted Space. In Section 3.1, we give an

overview of the naive solution. Section 3.2 presents the algorithm of the solution.

3.1 Overview

In a spatial alarm query a user provides a POI type and a distance and the

query triggers the alarm. The naive approach to evaluate spatial alarm is a

simple approach which works in the following steps:

• User’s location and alarm range are sent to the server.

• Server constructs the visibility graph using the POIs and obstacles within

radius r of user

• Server returns the visibility graph to the client.

• Client computes the obstructed distance of POIs in range r.

• If any alarm’s obstructed distance is less than r, then an alarm is triggered.

• As soon as the client moves again, the whole process is repeated.

This approach searches for a new alarm in the known region as soon as the

client changes it’s position.
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3.2 Algorithm

The input to the Algorithm 4 is the location of the client q and the search radius

r. The Output of the Algorithm is the visibility graph VG. In the Algorithm 4,

the GetAllPOI(q, r) function populates the set P of POIs within the radius

r centring the query point (the client’s current location) q. Similarly, GetO-

bstacleSet(q, r) function returns the set of all obstacles within the radius r

centring q.

MakeVisGraph(P,O) function returns the visibility graph VG with the set

of POIs P and the set of obstacles O.

Here, a Visibility Graph [14],[26],[27],[33] is a graph VG(V,E) where each

v ∈ V is either a POI or a data-point and for each (u, v) ∈ E, there is an edge

e between u and v if and only if it does not intersect with any obstacles i.e. u

and v are visible to each other along the edge e.

Figure 3.1: Visibility Graph

MakeAnswerSet(q, VG) function returns a heterogeneous data-model con-

sisting of its all parameters to be used by the caller client-side program.

The following method is triggered on any change of the user’s location by the
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Algorithm 1: GetAlarmables(q, r , Aprev)

Input : Query point q and the search radius r

Output: The visibility graph VG

1 P ← GetAllPOI(q, r)

2 O ← GetObstacleSet(q, r)

3 VG ←MakeIncrementalVisGraph(P,O,Aprev, Vg)

4 DO ← getAllObstructedDist(q, Vg) return

MakeAnswerSet(q, VG, DO)

system checking whether to give any alarm to the client or not along with the

check of necessity to fetch more POI and obstacle when the client goes outside of

the farthest POI’s alarming zone. Here, the function AlarmUser(pi) triggers

an alarm to the user since the respective POI pi is reached and also marks pi

to be reached in the set of POIs P .

The inputs to the Algorithm 4 are the current client-location q and the answer

set A consisting of the region’s center q,POI set P , obstacle set O, and the

visibility graph VG.

Algorithm 2: UpdateClient(q, A)

Input : Client’s current location q, latest answer set A

1 foreach pi ∈ P do

2 if distO(q, pi, VG) > pi.u then

3 AlarmUser(pi)

4 if distE(A.q, q) > A.du then

5 GetAlarmables(q, 100)

In this naive-approach, the visibility-graph is constructed more times than

necessary to hold accuracy, each of which constructions requires O(n2) [22],

where n = the number of edges of the obstacles. A huge overhead is also

sufficed to make P and O sets using such procedure. Again, the Algorithm 4

can also be run much less time than in this approach, which is improvised in

the later approach.
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Chapter 4

Our Approach

During building up the main approach, it is observed that spatial alarm evalu-

ation can be optimized using three key features:

• Firstly, reducing the number of device wake-ups;

• Secondly, reducing any re-computation;

• Thirdly, reducing the data communication overhead between the server

and the client.

For the first strategy to be successful, we propose an algorithm in this section

which will compute an optimal safe-region. The second optimization technique

is realized by passing optimal parameters among different functions as well as

between the client and the server, while the third one is achieved by passing

minimal parameters between the client and the server and in some cases recom-

puting some values in each side.

However, the second and the third options have some conflicts in some cases

and therefore cannot be achieved simultaneously. For this reason, we have

separated some parts of our main approach within two different modes, namely

- Bandwidth Saving (BWS) Mode and Computational Cost Saving (CCS) Mode.

In Section 4.1, we give an overview of the computation of the regions neccessary

for our approach. Section 4.2 presents the algorithm of the Bandwidth Saving

Mode. Section 4.3 presents the algorithm of the Computational Cost Saving

Mode.
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4.1 Computation of the Regions

In our approach, the known region is bounded by a parabola, whose focus is

the user’s location q, the standard equation of the parabola being y2 = 4ax or,

x2 = 4ay according to the client movement history, where a = mr.

First, we estimate a direction vector for the user’s next movement using

previous path history of the user. We take this direction vector as the major

axis of the parabola. The exposure of the parabola depends on mp. If the user

is likely to move along a straight line, the exposure of the parabola need not

be very high and only a narrow width parabolic region’s data is sufficient to

compute the client’s answer set efficiently. But if the user is likely to move

away from the major axis of the parabola very much frequently, the exposure

should be accordingly large enough to host more surrounding data as the client

is observed to go towards any direction and have any surrounding data in the

answer set. A function is defined which estimates the value of mp from the

changes in user’s direction from his previous trajectory, which are assumed to

be piecewise linear for any kind of movement and saved in our implementation

as a finite set of vectors. However,the function will ensure that the minimum

value of mp will be 2, which in return defines a reasonable minimum bound on

the width of the known region.

The parabola is bounded on the open side by a straight line parallel to the

directrix of the parabola. The distance of this straight line from the user’s cur-

rent location as well as the focus of the parabola is dependent on the client’s

velocity towards the predicted direction or axis-vector of the parabola. Thus,

we will position the bounding straight line of the known region at a distance

nr from the focus, where the value of np is is a finite function of the client’s

velocity. Intuitively we can see that, if the user moves fast, this bound should

be larger, as the user is likely to move through the region quickly. Thus np is

proportional to the client’s velocity v. We introduce an intuitive function in

this thesis, which will compute the value of np, the minimum bound being 1.

There are two such parabolic known regions in our main approach - primary

one for the POIs and an equal or bigger one for the obstacles. The known region
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for the POIs is built as described above, whereas the region for the obstacles

is intialized with the paraboallic known region of the POIs and expanded later

for any collision of any obstacle. If the collision is with the perimeter of the

parabola, then the value of mo is increased, whereas the value of no is increased

if the collision is with the bounding line of the region. This increment process

goes on unless there is no collision with any retrieved obstacle and the known

region boundary. If any POI is found within any newly expanded region of

the parabola, then the known region of the POIs is again set to the current

bounded prabollic region of the obstacles and the check continues further on

with later increment of the known region of the obstacles for anymore collisions

of any obstacle and the boundary of the bounded parabolic known region of the

obstacles. So, in short, the known region of the POIs is a bounded parabolic

subset of the bounded parabolic known region of the obstacles.

The computation of the reliable region is comparatively less complex once

the known regions are finalzied. The reliable region is also a parabolic region

inside the the known region of the POIs. The vertex of the parabola of the

POIs’ known region is moved r distance closer to the client’s location, which is

also the focus of the parabola of the POIs. According to the geometric property

of parabola, other points on the perimeter of the reliable region parabola comes

more than r distance closer to the major axis of the known region parabola,

assuring that the client won’t need to query the server for anymore POI or

obstacle to compute the answer set accurately while within the reliable region.

Finally, the safe region is computed using the nearest unalarmed POI p,

where maximum range of the safe region = distE(p, q) − r. The safe region is

the intersection of the circle centered at q with radius distE(p, q) − r and the

bounded parabolic reliable region.

4.2 Bandwidth Saving Mode

In this mode, the main focus is to reduce the bandwidth of communication be-

tween the server and the client. This mode is designed to operate in four parts

- client-initialization, the server query, alarm-configuration and finally update
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on any minimal amount of location change. The Algorithms 3, 4, 5, 6 show the

algorithmic-steps for these three parts respectively.

First ever entry point of our approach to the client is the Algorithm 3. The

input to the algorithm is the client’s current location q, alarm range r, current

velocity v and movement history S = {(m1, c1, ~d1), (m2, c2, ~d2), (m3, c3, ~d3), ...

(mn, cn, ~dn)} of that specific client. The next movement direction ~sAxis is then

predicted using S. The intuitive prediction used in our implementation is one

kind of linear interpolation as the weighted average of the recent movement

paths’ slope (m) giving some value of the intercept (c) to predict the next di-

rection towards the straight line, y = mx + c for any specific (x, y) position of

the client.

In the Algorithm 3, predictDirection(S) function returns a vector by

inerpolating all the line segments given in a set S as the client’s path history.

During the linear interpolation, the oldest path is given the minimum weight,

while the later ones get the incrementally higher weights iventually giving the

latest path segment the maximum weight and predicting the client’s current

direction most likely to be towards the latest paths.

The function varianceOfPath(~sAxis, S) returns higher value for higher vari-

ation of the movement paths of the client from the currently predicted direction

as from the movement history S. Inside this function, actually a biassed average

of the distances of the client’s point of change of path between two consecutive

piecewise linear path segments is taken. The bias confirms that the returned

value will meet the minimum bound of the value of mp, which is 2 to ensure the

accuracy and definition of the computed regions. In other words, this function

returns a real number within the range [2, ∞) which is proportional to the

variation of the client’s path directions given the directed path segments in the

set S. This value is assigned to the multiplier mp to construct the parabola

y2 = 4 ∗ (mp ∗ r) ∗ x, since the more variation in the client’s path requires more

cross-section area of the known region parabola.

An intuitive logarithmic function is used to define the value of np =max(ln(e+

v), ln(e× v)).
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After computing these values, a call to the Algorithm 4 contributes new POIs

and obsacles to the current answer set.

Finally, the reliable region πr is computed as described in the sub-section 4.1

calling the function getReliableRegionParabola(A.πp,mp, np, r), where

A.πp is the current bounded parabolic known region of the POIs.

Algorithm 3: InitializeClient(q, r, v, S)

Input: Client’s current location q, alarm range r, current velocity v and

movement history S

1 ~sAxis ← predictDirection(S)

2 mp ← varianceOfPath(~sAxis, S)

3 np ←max(ln(e+ v), ln(e× v))

4 A← A ∪ getKnownRegionData(q, r, ~sAxis, A,mp, np)

5 πr ← getReliableRegionParabola(A.πp,mp, np, r)

6 ConfigUpdate(q)

The input to the Algorithm 4 is the current location of the client as well as

the query point q, alarm range r, directed axis of the parabola ~sAxis, the last

answer set Aprev, calculated variation of path mp and the velocity dependent

value np to bound the parabolic known region by a straight line. This algorithm

makes the frequent queries more efficient and accurate and needs much less

server communication.

The getVertex(q, sdir) returns the vertex point u of the parabola having

focus at q and the axis along the vector sdir.

The GetObstacleSet(q,mo×r, no) returns all obstacles within the parabola

y2 = 4 × (mo × r) × x which is again bounded by a straight line at (no × r)

distance from the focus q and perpendicular to the axis of the parabola.

In this algorithm, AttachToVisGraph(VG, P, O) function adds the POIs

and obstacles in the sets P and O respectively to the provided visibility graph

VG, so that minimal re-computation is needed.

The checkCollision(πo, O) function returns 1 for collision of any obstacles

with the parabolic perimeter of the known region, 2 for collision of any obstacle

with the bounding straight line and negative value for no collision of any ob-
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stacle in the queried set of the obstacles.

The output of the Algorithm 4 is an answer set A which consists of the radius

of the known regions of POIs and obstacles (πp and πo respectively), and the set

of all POIs within bounded parabola πp. Since it is a bandwidth saving mode,

the visibility graph is not sent to the client as long as it can be computed using

the existing data in the client side.

The input to the Algorithm 5 is the current location of the client q and the

answer set got from the Algorithm 4. This algorithm is also responsible for

triggering an alarm to the client if the client is within the alarming distance of

any POI.

In this algorithm, the visibility graph is computed using the answer sets P

and O got as return of the 4 from the server side. The input to the algorithm

6 is the current location of the client q, the radius of the safe region(rsafe) and

finally the already computed answer set A. The output of the algorithm is the

minimum distance du to trigger this algorithm the next time.

4.3 Computational Cost Saving Mode

The algorithms run in this mode almost similarly as in the ”Bandwidth Saving

Mode” with all the four parts - client-initialization, the server query, alarm-

configuration and finally update on any minimal amount of location change as

demonstrated in the Algorithms 3, 4, 5, 6 .

However, the main difference with the previously descried mode from this

mode is - the Algorithm 4 returning the computed VG as another element of the

answer set A from the server side and the algorithm 5 not reconstructing this

VG in the client side during running the Algorithm 5, whereas the Algorithm 6

remains all the same.

Therefore, the computation overhead for computing the VG is saved in the

client-side in cost of a one-time communication overhead in transferring the VG

in the Algorithm 4.
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Algorithm 4: GetKnownRegionData(q, r, ~sAxis, Aprev,mp, np)

Input : Query point q, query radius r, axis of the parabola ~sAxis, the

last answer set Aprev, mp and np

Output: The answer set, A← {q, πp, πo, P, VG, DO}
1 u← getVertex(mp × r, sAxis)

2 sdir ← getDirectrix(~sAxis, u, q)

3 sb ← getBoundingLine(~sAxis, np × r)
4 πp ← BoundedParabola(q, sdir, sb)

5 P ← getPoisWithinParabola(πp)

6 πo ← πp

7 O ← getObstaclesWithinParabola(πo)

8 f ← checkCollision(πo, O)

9 while f > 0 do

10 if f == 2 then

11 no + +

12 else

13 mo + +

14 Pp ← getPoisWithinParabola(πp)

15 Op ← getObstaclesWithinParabola(πo)

16 if |Pp| > |P | then

17 P ← Pp

18 mp ← mo

19 np ← no

20 πp ← πo

21 O ← Op

22 f ← checkCollision(πo, O)

23 if Aprev.VG == NULL then

24 Aprev.VG ← constructInitVisGraph(P )

25 Rt ← getObstacleRtree()

26 DO ← getObstructedDist(Aprev.visGraph, q, P,Rt)

27 return MakeAnswerSet(q, πp, πo, P, VG, DO)
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Algorithm 5: ConfigUpdate(q, A)

Input : Query point q, answer set A

1 foreach pi ∈ P do

2 pi.dO ← distO(q, pi)

3 if pi.dO ≤ r then

4 AlarmUser(pi)

5 else if pi.dE < rsafe then

6 rsafe ← pi.dE

7 return rsafe

Algorithm 6: UpdateOnLocChange(q, rsafe, πr, A)

Input : q, rsafe, A

Output: du

1 if isOutsideReliableregion(q, A) then

2 A← GetKnownRegionData(q, dq)

3 rsafe ← ConfigAlarm(q, A)

4 if dq > rsafe then

5 rsafe ← ConfigAlarm(q, A)

6 return du ← rsafe
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4.4 Proof of Correctness

Theorem 4.4.1. The reliable region guaranties that no more POIs and obsta-

cles are retrieved from the database

Proof. By the geometric property of parabola, it is known that every point on

a parabola is equidistant from the focus and the directrix, that means, in the

Figure 4.1, SP = PM for the known region parabola and SP ′ = P ′M ′. Among

all such points P and P ′, the vertex is the closest one to the focus.

Now, according to the computation of the reliable region, the vertex of the

parabola is brought r distance closer to the client’s location as well as the

focus of the parabola of the known region. So, for any other point P on the

perimeter of the known region and any other point P, on the perimeter of the

reliable region, distE(P, P ′) ≥ r. Again, by the Euclidean Lower Bound (ELB)

property, distO(P, P ′) ≥ distE(P, P ′). Therefore, no POI outside the known

region will be in the alarming range of the client and the client need not query

the server for any more data point while inside the reliable region. Q.E .D.

Figure 4.1: Proof for Theorem 4.4.1
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Theorem 4.4.2. No computation is needed other than location calculation in-

side the safe region.

Proof. Since the safe region is a sub-set of the reliable region, so by the proof-1,

no server query is needed to compute the answer set while the client is inside

the safe region.

Now, by the construction of the safe region, the maximum Euclidean range

of the safe region is, rsafe = min∀p∈PdistE(p, q) − r. Therefore, even the next

closest to be alarmed POI will not be missed even if no calculation is done while

the cleint is inside the safe region.

However, the client’s location q must be regularly computed to check whether

the safe region is crossed or not. Therefore, it is proved that no computation is

needed other than location calculation inside the safe region. Q.E .D.
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Chapter 5

Experimental Study

To test and support our theoretical approach to compute spatial alarms in the

obstructed space efficiently, we have done extensive experiments using both real

and synthetic data-sets. In this chapter, we are going to present the validation

and comparison of the proposed approach against the naive approach regarding

various effective parameters

5.1 Experiment Setup

In this section, the detailed setup of the experiments is described as per the

following sub-sections

5.1.1 Data Set Used

We have used both real and synthetic data-sets to evaluate our solution. In case

of real data-sets, we have used obstacles and point of interests (POIs) of Ger-

many [1]. The obstacle set has 30674 minimum bounded rectangles (MBRs) of

railway lines (rrlines). In our experiment, we assume obstacles to be presented

by MBRs, but our algorithm can handle any type of obstacles. The POI set

has 76999 MBRs of hypsography data (hypsogr). We assume data-points to be

endpoints of the hypsography data. In this way, the POIs and obstacles are in

the same plane which allows us to simulate a real-life scenario. We do not allow

intersections between POIs and obstacles, neither do we allow duplicate POIs

or obstacles. In case of synthetic data-sets, we have generated the obstacles and

POIs from the real datasets following a uniform distribution. Before using in
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the real experiment, we have always normalized both real and synthetic dataset

in a 10, 000× 10, 000 grid.

In our experiments, we have assumed only one type of POIs. However, our

approach also can handle multiple types of POI.

Prior to running the main algorithms, two separate R-trees are built to store

the POIs and the obstacles respectively from the used data-sets.

5.1.2 Sample Query Generation

We have simulated the movement of the client randomly in the runtime. During

the experiments, we have assumed that any movement-path of the client can

be synthesized as piecewise-linear, i.e., a set of directed straight lines. In the

explicit form of any straight line, y = mx+ c , for any client position (x, y), we

have randomized the slope m giving some value of c each time. The direction

of the client along this new straight line is also randomized to be either in for-

ward or backward along the path, with a bias towards the forward direction,

as the real world user-movement with a definite source and destination usually

proposes.

After determining the clients new position along this path, in the naive ap-

proach, the algorithm 1 directly queries the server for POIs and obstacles within

the clients alarming range. Alternately, in the main approach, the algorithm 6

checks the region-crosses and queries the server if necessary.

The clients velocity is also randomized within a certain range to give a new

position of the client along the current direction in the next iteration, which

again generates a new server-query accordingly.

Meanwhile, the direction of the client is predicted in the main approach from

the latest set of piecewise linear paths in the clients movement history. This

prediction procedure has already been described in the Algorithm section.

5.1.3 Measurement of the Performance Parameters

In our experiments, we vary the following query parameters:

(i) Clients Velocity Range
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(ii) The Alarm Range r

(iii) The size of data sets (synthetic data set)

. Table 5.1 summarizes the parameter values used in our experiments. In

all experiments, we estimate I/O accesses and the query processing time to

measure the efficiency of our algorithms. In each set of experiments, we run the

experiment for 100 queries and present the average result.

Parameter Values Default

Clients Movement lenght(v) Range (Unit) 500,1000,1500,2000 2000

Alarm Range r 60, 80, 100, 150 150

Synthetic data set size 5K, 7K, 15K, 38K -

Table 5.1: Values of different query parameters used in our experiments

5.1.4 Implementation Language and Tools

The project of our experiment is implemented using C++ language and have

been compiled, debugged and tested using Microsoft Visual Studio 2015 Enter-

prise edition with a full version student-license from DreamSpark.

5.1.5 PC Configuration

We have run our experiments in three PCs of the following configurations:

1. Intel Core i5 2.9 GHz (Quad Core), 12 GB RAM

2. Intel Core i5 2.3 GHz (Quad Core), 4 GB RAM

3. AMD FX 6100 3.3 GHz (Hexa Core), 8 GB RAM

The average of these multiple runs is taken to measure and compare the per-

formance of both the nave approach and our approach.

In Section 5.1.6, we compare the results of two approaches.

5.1.6 Comparison of Our Approach with Naive Aproach

Effect of Clients movement length:

Figure 5.1(a), 5.1(b), 5.1(c) and 5.1(d) show processing time, server query,

I/O (obstacle) and I/O (POI) respectively, for processing spatial alarm queries

using naive approach and our approach. We observe that for both algorithms
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processing time and server query increase with the increase in length of user’s

movement. We also observe that in terms of server query our approach performs

almost 14times better than the naive approach. and in case of runtime our

approach runs almost 3 times better than the naive approach. In case of I/O

our approach initially is higher than the naive approach but, in the average case

our approach is better than the naive approach by approximately 10 times.

(a) (b)

(c) (d)

Figure 5.1: Effect of Client’s movement length for Germany data (a) query

processing time and (b) Server Query (c) IO-POI (d) IO-obstacle

Effect of Alarm range r:

Figure 5.2(a), 5.2(b), 5.2(c) and 5.2(d) show processing time, server query,

I/O (obstacle) and I/O (POI) respectively, for processing spatial alarm queries

using naive approach and our approach. We observe that for both algorithms

processing time and server query increase with the increase in length of alarm
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range. We also observe that in every alarm range our approach outperforms the

naive approach by multiple times.

(a) (b)

(c) (d)

Figure 5.2: Effect of Alarm Range r for Germany data (a) query processing

time ,(b) Server Query ,(c) I/O(obstacle) and (d) I/O(POI)

Effect of synthetic dataset size:

Figure 5.3 (a), 5.3(b), 5.3(c) and 5.3(d) show processing time,server query,

I/O (obstacle) and I/O (POI) respectively, for processing spatial alarm queries

using naive approach and our approach. We observe that for both algorithms

processing time and server query increase with the increase in the size of syn-

thetic dataset. We use uniform distribution of real dataset to produce datasets

of size 5k,7k,15k and 38k. We also observe that in every synthetic dataset size

our approach outperforms the naive approach by multiple times.

31



(a) (b)

(c) (d)

Figure 5.3: Effect of synthetic data set size for Germany data (a) query pro-

cessing time ,(b) Server Query ,(c) I/O(obstacle) and (d) I/O(POI)
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Chapter 6

Conclusion

In this thesis we have addressed evaluation of spatial alarm in obstructed space

for the first time. We have introduced an approach for efficient evaluation of spa-

tial alarm with minimum device wake-ups and duplicate data retrival from the

server. Our approach has been tailored for moving clients which is best suited

for clients next movement. We have proposed two variations of our approach to

incorporate both accuracy and efficient communication bandwidth.Our exper-

imental setup provides a comparative analysis between our approach and the

naive approach on different parameters. We have finished our experiment using

both real and synthetic datasets. The results of the experiment conducted shows

that our proposed approach is better than the naive approach in execution time,

IO access and number of server queries by multiple times.

6.1 Future Directions

In the future we wish to extend our thesis work in several directions.

• In future, we aim to manipulate the geometrical properties of the regions

to find a larger safe region.

• We wish to find a better prediction function for approximating the clients’

next direction.

• In the future we wish to provide authentication and privacy while access-

ing the client’s location.
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• We aspire to find an optimization for visibility graph construction for our

approach.

• In the future we would like to use our approach to solve spatial alarm

queries with moving targets.
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