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Physical therapy exercises are critically important for the rehabilitation of patients with motor deficits. While these exercises
can be most effective when performed properly under the supervision of a physical therapist, it may not be a viable option for
all patients. Thus, there is a growing trend towards at-home physical rehabilitation tracking systems as they can be more
accessible and flexible for the patients. However, existing systems mostly depend on camera and wearable based solutions
which can be costly and limited. To this end, we propose a low-cost and non-intrusive end-to-end solution using IoT based
wireless sensing devices. Our solution, Wi-PT-Hand, leverages Channel State Information (CSI) captured from ambient WiFi
signals, and uses Bayesian optimizers and a hierarchical deep learning model trained to recognize the prescribed hand
exercises. The proposed system includes (i) segmentation of the therapy time into activity and non-activity durations, (ii)
recognition of the exercise performed in an activity segment, and (iii) counting of the number of repetitions of the exercise
performed within that segment. Extensive experimental results show that the proposed system is robust and performs well in
various real life scenarios and thanks to the lightweight design it can work on low-resource edge devices properly.

CCS Concepts: • Human-centered computing→Mobile devices; Ubiquitous and mobile computing systems and
tools; Mobile devices; • Applied computing→ Health informatics.

Additional Key Words and Phrases: WiFi sensing, physical therapy, rehabilitation tracking, device-free, segmentation

1 INTRODUCTION
Rehabilitation is the process of recovering a patient’s health condition to its normal state after a period of illness.
This is a critical process for patients affected by central nervous system disorders such as Parkinson’s disease
(PD) and cerebrovascular diseases (e.g., stroke). For example, stroke affects nearly 800,000 individuals each year in
the U.S. and for approximately 600,000 of them, this is their first event [34]. Many survivors experience persistent
difficulty with daily tasks as a direct consequence [27]. These include being less active, being less stable, moving
slower as well as adopting inefficient movement patterns resulting in increased physical demands. Thus, more
than two thirds of stroke survivors receive rehabilitation services after hospitalization. According to recent
studies, patients can recover up to 91% functional ability if they start the rehabilitation within three months of the
stroke [21]. Similarly, rehabilitation can also minimize secondary complications [1]. Thus, maintaining physical
activity and performing rehabilitation treatment as early as possible is crucial for the recovery of a patient.
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In current practice, rehabilitation treatment for a patient is usually performed under the supervision of a
physical therapist who provides guidance to the patient when performing specific exercises and makes sure
that each exercise is performed properly for a successful treatment. While such a practice with one-on-one
attention from a physical therapist will ensure a quality treatment for the patients, it limits the application of
rehabilitation treatment to a certain environment and comes with several costs (e.g., treatment cost, trip cost
to the facility, dedication of specific time). Thus, alternative solutions which allow patients to perform such
rehabilitation activities at home or outside of a dedicated rehabilitation facility can avoid such costs and provide
a ubiquitous, and easily accessible solution. On the other hand, these alternative solutions should not reduce the
quality of the treatment and must continue to give feedback to patients to ensure that rehabilitation exercises are
performed properly and as prescribed. Note that clinical visits and expert based sessions can still be performed as
needed but the count of such visits will get much smaller.

The existing at-home systems mainly depend on wearable sensors or cameras located in the patients’ houses [3,
39]. However, such solutions come with several issues. For example, wearable solutions come with several
burdens such as wearing the device, setting it up, and recharging the devices. Moreover, some patients may not
be comfortable with wearing them. Similarly, camera-based solutions can trigger privacy concerns as they can
record more than what is needed and they may require certain lighting conditions. Alternative to these existing
systems, in this work1, we propose an end-to-end at-home WiFi sensing based device-free physical rehabilitation
tracking (Wi-PT-Hand) system focused on recognizing and measuring hand-based exercises. There are a few
other solutions that also rely on the analysis of radio-frequency (RF) signals; however, these systems require
placements of more costly equipment (e.g., mmWave radar[4]). On the contrary, our goal is to leverage the
ubiquitously available WiFi signals and edge devices in most indoor environments and houses for rehabilitation
activity tracking, thus providing a low-cost and non-intrusive solution. Moreover, to provide an end-to-end
solution, we target a system that can automatically (i) segment the received signal between periods of activity
and static periods (i.e., no movement), (ii) classify the specific rehabilitation movement type (e.g., wrist, finger)
for each segmented activity, and (iii) count the number of repetitions of the same activity performed within the
current activity segment.

The main contributions of this work can be summarized as follows:

• We design and develop a low-cost, and non-intrusive end-to-end system that can be deployed on edge
devices at homes for tracking hand movements.
• We consider segmentation, classification, and counting components together (for the first time for small

scale hand and finger movements) and develop solutions based on Bayesian optimizers and a hierarchical
Dense Neural Network (DNN) model that are appropriate for edge devices.
• Through experimental evaluation, we analyze the performance of the proposed complete system as well
as its individual components in various scenarios (e.g., different users/environments, hand conditions)
and show its practicality and robustness.

The rest of the paper is organized as follows. In Section 2, we discuss the related work on both sensor based
rehabilitation tracking and WiFi sensing. In Section 3, we present the details of the proposed Wi-PT-Hand system.
We evaluate the proposed system through experiments in Section 4. Finally, we provide our concluding remarks
in Section 5.

1This work extends our preliminary work [19] by focusing on hand-based physical rehabilitation tracking and proposing further techniques
such as activity segmentation and counting.
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2 RELATED WORK
Our study spans multiple research fields such as rehabilitation tracking, WiFi sensing, and human activity
recognition (including segmentation, classification and counting of activities) especially for small-scale activities
like wrist and finger movements. Therefore, our analysis of related work is divided into two subsections.

2.1 Sensor-Based Rehabilitation Tracking
Thanks to the ubiquity of Internet of Things (IoT) devices, there have been many smart health and assistive
solutions developed to track the activities of patients during the rehabilitation process. These solutions can
be categorized into two major approaches. In the first approach, wearable sensors attached to the body of the
patient are considered [7, 8, 28, 29]. These sensors usually contain an Inertial Measurement Unity (IMU) that can
measure accelerometer, gyroscope, and magnetometer readings and can obtain different directional and angular
movements of the limbs of the patients. However, patients may feel uncomfortable with wearing these sensors
and may not deal with charging them as needed.
In the second approach, the studies use camera-based solutions (e.g., Kinect [42], RGB camera [6], depth

camera [22]) and through the analysis of collected frames, detailed patient movements and poses can be detected.
While such systems are non-intrusive as they do not require a device worn by the patient, they have certain
limitations and drawbacks. For example, they can only track a person when they are in sight of the camera. These
systems can also pose a privacy risk to users as they detect not only people’s movements but also their faces
and the environment they live in. Finally, they can be costly to deploy, especially for large areas where multiple
cameras need to be deployed to obtain sufficient coverage.

In addition to these major approaches, there is also a relatively new but growing number of studies that rely on
RF signals and radar imaging. These studies [2, 4, 30] rely on specific signals (e.g., FMCW [2], mmWave [4, 30])
and deep learning based analysis of signal features. These solutions can be more effective than previous solutions
as even the activities that are performed out of sight can be detected because RF signals can penetrate through
some obstacles and reflect from some other objects in the environment. On the other hand, these solutions require
special equipment (e.g., mmWave radar), which can be costly. Different from these systems, our solution relies
on WiFi signals which can be found in most indoor areas or can be produced through low-cost devices easily.
Additionally, the proposed system can use low-cost microcontrollers to capture the signals, preprocess them, and
make predictions directly on-board.

2.2 Segmentation and Counting Works on WiFi Sensing
Activity recognition using WiFi sensing has recently been studied a lot with a much focus on detection of
different set of activities (e.g., gestures [35], falls [26]) and environmental changes (e.g., soil moisture [17],
occupancy counting [24]). We refer the interested readers to the surveys on WiFi sensing (e.g., [23]) and in this
part, we specifically cover the WiFi sensing studies that not only aim to recognize the activity but also consider
segmentation and counting of activities towards building a complete solution.

We start with summarizing these studies in Table 1 together with their issues and comparison to the proposed
work. A device-free fitness assistance system is proposed in [13] for equipment-based exercises. While this
study discusses segmentation, and counting components as well, they are not well defined. Auto-correlation
based similarity analysis is considered for detecting workout and non-workout times as well as for counting the
repetitions in general but no procedure is defined to find out the exact start and end times of activities. Moreover,
no proper evaluation is performed to show the usability of their work. Above all, their system is shown to work
only with very large-scale activities like equipment-based exercises. In contrast, we focus on very small-scale
hand movements, such as wrist and finger movements, which are more challenging to identify.
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Table 1. Comparison of Existing Physical therapy Monitoring and Tracking Systems

References Year Techniques Used Segm. Class. Count. Issues

Fitness Asst.[13] 2018 Auto-correlation, DNN, Spec-
trogram analysis

Segmentation and
counting are not prop-
erly described and
evaluated.

DeepSeg [40] 2020 CNN to classify states and ac-
tions

Stateful segmentation
and classification, no
counting

RT-Fall [38],
Anti-Fall [43] 2016

Band-pass filter to denoise and
sliding standard deviation of
CSI phase-difference for sev-
eral states

Only for fall detection

Temporal Unet [37] 2019
Convolution using Unet to de-
fine confidence on standard de-
viation of CSI amplitudes

Incomplete description
of segmentation and no
counting

Tang et al. [32] 2021
Butterworth low-pass filter for
segmentation and LSTM-FCN
for classification

Only for hand gesture
classification

Chen et al. [10] 2021

Butterworth low-pass filter,
PCA Dynamic adaptive sliding
window for segmentation and
CNN for classification

Mostly focuses on
whole-body activities

Transtrack [41] 2022

Hampel and band-pass filter,
PCA, recursive Otsu threshold-
ing and online meta-transfer
learning based on SVM

Finds segmentation and
classification for whole-
body movements with a
single performer

Wi-Gym [44] 2023 Hampel filter, PCA, FFT, Gabor
filter, SVM, DTW, Fuzzification

Whole-body actions
without counting

U-Shape Nets [36] 2024
DTW and U-Shape deep net-
works, i.e., FCN, UNET, and
UNET++

Used public datasets of
whole body movements
of a single person

This study 2024

PCA, Sliding Window, Lo-
cal Averaging, Bayesian Opti-
mizer, hierarchical DNN, local
min and max

N/A

Fully addressed, Partially Addressed, Not addressed.

The DeepSeg [40] system uses a CNN model to identify an activity session’s start, motion, end, and static states
and thereby segments the CSI series obtained from WiFi sensing over five fine-grained activities like several
hand gestures and five coarse-grained activities like running. They divide the entire CSI series into continuous
bins of CSI frames and predict which bin is what out of the four states. In this way, the start and end points of a
very fine-grained action, like a finger movement, would not be specific and can offset these points by the size
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of the bin in the worst case. Moreover, the start and end states can be too short to be missed for small-scale
activities like finger movement, which reduces the portability of the model for very fine-grained activities like
hand physiotherapy actions.

The RT-Fall [38] (and its predecessor, Anti-Fall [43]), also uses stateful transition between activities to segment
and detect a fall of various natures. It uses a band-pass filter to denoise the CSI data. Then, the standard deviation
of the phase difference is used to identify a person’s specific action which ends with a fall. However, this system
is highly dependent on the environment since the phase difference and amplitude of the CSI data vary broadly
between environments. In addition, that study focuses on only fall activities.
The Temporal Unet [37] proposes a customized mapping function from CSI series to action label using the

convolution of CSI series windows to detect several movements in various environments. The purpose is not
entirely segmentation, but their approach produces segments of actions convincingly, which is not fully explored
and a proper segmentation methodology is not described. In addition, no repetition counting approach is provided
in this study. The action scale is again based on whole-body movements. The study in [32] shows promising
classification results with fifty different types of gestures. However, it does not study how to detect the start and
end time of gestures, i.e., segmenting, nor how many times the gesture is performed. In [10] a real-time activity
recognition system is studied using dynamic-sized sliding windows. Their approach looks mostly whole-body
movements such as sitting, and walking and only one hand-based small scale movement (i.e., waving) is included.
Moreover, no solution for counting is proposed.
Similarly, in more recent works [36, 41, 44], some solutions for segmentation and classification of whole-

body movements are studied. For example, the study [41] applies Hampel and band-pass filters to denoise
principal components and then takes recursive Otsu thresholding to separate gesture-induced signals from
the background noise inspired by image segmentation. In [36], authors compare action recognition, the start
and end point detection of action, and action segmentation using three U-shape networks, i.e., FCN, UNet, and
UNet++, on several publicly available data sets of whole-body actions. Finally, in Wi-Gym [44] a gymnastics
exercise assessment system is developed by comparing how seven gymnastic actions are performed by a person
and a trainee through a segmentation and classification procedure. All these studies, however, do not consider
small-scale movements and no solution for counting the activities performed is proposed. Overall, to the best
of our knowledge, there is no study that considers small-scale hand and finger movements and provides an
end-to-end solution with segmentation, classification, and counting components together.

3 PROPOSED WI-PT-HAND SYSTEM
In this section, we introduce our end-to-end wireless sensing based solution for tracking physical therapy hand
movements. The proposed system aims to detect (i) start and end of different movement/activity segments, (ii)
the type of the movement performed in each segment, and finally (iii) the number of repetitions of that activity
performed within that segment. In Fig. 1, we provide an overview of the proposed system and illustrate the steps
required for reaching out these goals. Next, we elaborate on each of these steps in the following subsections. The
notations used throughout the paper together with their descriptions are given in Table 2.

3.1 CSI Data Collection
WiFi sensing uses ambient WiFi radio signals to detect and sense the physical properties of the environment.
These RF signals propagate over multiple unique physical paths from a transmitter (TX) to a receiver (RX). These
multi-paths then cause variations in the RF signal as these signals reflect off of surfaces and propagate through
surrounding objects such as furniture, walls and people within the environment.
Channel state information (CSI) is a signal metric captured in communication systems that use orthogonal

frequency-division multiplexing to allow data symbols to be encoded in multiple subcarrier frequencies allowing
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Fig. 1. Wi-PT-Hand System Overview.

for higher symbol throughput and resilience to signal fading and shadowing caused by multi-path interference
in the channel. CSI is modeled using ~ (8 ) = � (8 )G (8 ) + [ (8 ) , where 8 is the subcarrier index, G is the transmitted
signal, ~ is the received signal, [ is a noise vector, and � is a complex vector containing the CSI denoting the
transformation change required from the input G to the output ~. The complex CSI vector (in 802.11) contains 64
subcarriers where 52 are data subcarriers and 12 are null subcarriers. The CSI value for each subcarrier is defined
as a complex number with a real (� (8 )A ) and an imaginary (� (8 )

8<
) component, which can be used to compute

amplitude, � (8 ) =
√
(� (8 )

8<
)2 + (� (8 )A )2, and phase, q (8 ) = 0C0=2(� (8 )

8<
, �
(8 )
A ).

To collect CSI data, we use the WiFi-enabled ESP32 microcontrollers and our recently developed open-source
ESP32-CSI Toolkit [15]. These ESP32 microcontrollers provide a small-size, low-cost, and standalone solution
compared to other existing methods [5, 14, 25] (which require a host laptop with an updated Network Interface
Card (NIC)); thus, they can be easily deployed anywhere. We transmit frames from an ESP32 transmitter and
then collect WiFi CSI from a separate ESP32 receiver at a fixed rate of 100Hz. We then extract the amplitudes of
the CSI data to be used in the next steps of the proposed system.

3.2 Data Preprocessing
Once the CSI data is collected, we then preprocess it through the steps given in Algorithm 1. That is, we first
run Principal Component Analysis (PCA) over the amplitudes of the CSI data (line 1). Then, from the set of
principal components (PCs) computed by PCA, we select a smaller subset of d components starting from the
dCℎB component (line 2). These components are considered to be the most significant representative consecutive
subset for the data and will be determined by the optimizer. Later on, we take the average of the selected PCs
to further reduce the dimension of the data and make the impact much more visible (line 2). Finally, we slide a
window over the entire time series data and perform a moving average over this data for [ times recursively
using a window size of l . As discussed in Section 3.6, the values of [ and l are optimally chosen along with a
few other parameters using a hyperparameter optimization approach in our system.
Fig. 2 shows how Algorithm 1 preprocesses the series of principal components of the CSI time series data

step by step. The output of PCA over the amplitudes of the CSI data consists of 64 principal components as
shown in Fig. 2a. For this specific dataset, our hyperparameter optimization method chooses the third, fourth,
and fifth principal components (PCs) as the best subset from all PCs, as depicted in Fig. 2b. By taking the average
of amplitudes in these selected PCs, the impact gets more visible while having some noise, as shown in Fig. 2c.
Furthermore, with repetitive and recursive averaging for [ times over sliding windows of size l , the noise is
filtered as plotted in Fig. 2d. After this preprocessing part, we prepare to segment and label this result for the
activity and non-activity portions.
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Notation Description

� CSI series
dB First selected PC from the beginning
d Number of total selected PCs
[ Number of repetitive averages
l Window size
g Threshold used for the separation of activity and non-activity segments
f True labels per CSI frame

%?20 PCA output for CSI amplitudes
% Average over all selected PCs of %?20
%l Preprocessed CSI data over a window size l
k Window multiplier
W Smoothing factor
A Action label for a CSI frame or segment
A′ Non-action label for a CSI frame or segment
j Array of activity and non-activity labels per CSI frame
^ Set of counts per activity segment
|- | Size or length of any array -

- [0 : 1] Mean of values within range [0,1] in any array -
Table 2. Notations and their descriptions

Algorithm 1: Preprocessing of data (� , dB , d , [, l)
1 %?20 ← %��(� )

2 % ← %?20 [dB : dB + d − 1] // Select a subset of PCs and take the average

3 for = ← 1 to [ do
4 for 8 ← 1 to |� | by 1 do

// Select a sliding window

5 a← max(1, 8 − l/2)
6 b← min( |� |, 8 + l/2)
7 %l [8] ← % [0 : 1] // Moving average

8 % ← %l

9 return %l

3.3 Activity Segmentation
The trending nature of fluctuation of %l obtained after the preprocessing steps can be seen very much related to
the actions performed. Thus, we have designed our segmentation method based on this observation. To this end,
we consider two different approaches. In the first approach, we pick the overall-average (OA), g , of the series %l ,
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Fig. 2. Step by step impacts of Algorithm 1.

1 4 8 12 16 20 24 28 32 36 40 44 48 51

Time (minutes)

-0.5

0

0.5

P

Averaged PCs Local Average Overall Average

Fig. 3. Sinusoidal trending nature of the principal components of the CSI data, motivating choice of Local Average as the
threshold, rather than Overall Average as the threshold.
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Fig. 4. Examples depicting Algorithm 3 in action.

as a threshold to separate the activity and non-activity segments using the following equation:

∀8 ∈ [1, |%l |], j8 =
{
A, if %l [8] < g

A′, otherwise
,where g = %l (1)

Here, j8 = A and j8 = A′ represent an activity and non-activity CSI frame, respectively. The average value,
g = %l is considered as the threshold over the series %l , which is basically a flat line along the mean of the data
series. It identifies the portion of the data above this threshold as non-activity and the portion of the data below
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Algorithm 2: Segmentation of Activities (%l , l ,k )
1 l< ← k × l // larger window

// Find local thresholds by averaging in non-overlapping large windows

2 for 8 ← 1 to |%l | by l< do
3 B ←<0G (1, 8 − l</2), 4 ←<8=( |%l |, 8 + l</2)

4 gB [B : 4] ← %l [B : 4]
// Assign activity labels by comparing smaller window and larger window averages

5 for 8 ← 1 to |%l | by l do
6 B ←<0G (1, 8 − l/2), 4 ←<8=( |%l |, 8 + l/2)

7 if %l [B : 4] < gB ( B+42 ) then
8 j [B : 4] ← A // Activity

9 else
10 j [B : 4] ← A′ // No activity

11 return j // Activity/non-activity labels

the threshold as activity, which aligns with our observation. While this overall average value can provide some
understanding towards the separation of activity and non-activity periods, due to many factors (e.g., environment,
hardware, etc.), there usually occurs local variations in the data; thus OA method often fails to identify such
local trends of the time series data with such a global average value. This can be observed in Fig. 3, which clearly
shows that the globally calculated overall average cannot be used for identifying all activity segments while a
local average might be more successful to differentiate activity and non-activity periods. To this end, as a second
approach, we propose to use a threshold obtained from a local average (LA) over a larger window of sizek × l ,
and we aim to recognize local changes in the series by comparing this local average in a small and a large window.
The details of this approach is given in Algorithm 2. We first calculate the thresholds in large non-overlapping
windows (lines 2-4). Then, if the local average obtained in the smaller window (that the current data point is
in) is less than the local average in the larger window (line 7), we recognize it as part of an activity segment;
otherwise, it is considered within a non-activity segment.
The second approach is more capable of recognizing the activity segments throughout a long data series

compared to the first overall average based approach. However, both of these methods can produce isolated
segments with small durations, usually on the edge of the actual segments. This can be within an activity segment
(as shown in Fig. 4a) or within a non-activity segment (as shown in Fig. 4b). To address this problem, we develop
a merging process for such segments as described in Algorithm 3. That is, starting from the smallest possible
segment size l to the maximum possible segment size l × W , we check all possible segments of size V over the
entire time frame. If each of the current, preceding and succeeding windows of the same size can be uniformly
considered as either an activity (A) or non-activity (A′) segment, then the current segment assignment is
considered to be valid. But if the current segment does not match with the preceding and succeeding segments
(line 6), which also requires them to be the same segment type (i.e., A or A′), the current segment is converted
to its neighbors’ type (line 7). Note that the rationale behind starting with smaller possible segment sizes (line 1)
is this bottom-up approach allows merging smaller falsely identified segments first, leading it to generate larger
mergeable segments.

Fig. 4 illustrates examples of this merging process. In Fig. 4a, a misidentified activity segment is removed as it
is surrounded by non-activity segments of same size, while in Fig. 4b a misidentified non-activity segment (which
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Algorithm 3:Merging Isolated Segments (j , l , W )
1 for V ← l to W × l by l do
2 for B ← (V + 1) to ( |j | − 2V + 1) by 1 do
3 j2DA ← j [B : B + V − 1]
4 j− ← j [B − V : B − 1] // preceding segment

5 j+ ← j [B + V : B + 2V − 1] // succeeding segment

// If the current segment does not match with neighbors, it is converted.

6 if
(
(j2DA = A || j2DA = A′) & (j− = A|| j− = A′) & (j+ = A|| j+ = A′) & (j2DA ≠ j−& j2DA ≠ j+)

)
then

7 j [B : 4] ← j+

8 return j
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Fig. 5. Activity Group Binary (Finger or Wrist) Classifier DNN Model Specifications out of the used three DNN models.

divides the activity segment) is converted to an activity segment as it is surrounded by activity segments. Finally,
in Fig. 4c, the result of running the merging algorithm on multiple segments over a time frame can be seen. All
the isolated and falsely identified segments are merged or removed properly. Note that the parameters used both
in Algorithm 2 and Algorithm 3 are optimized through an optimizer as we will discuss later. The segmentation
accuracy is defined as the number of activity or non-activity CSI frames that are correctly identified and the
optimizer uses the corresponding F1-loss for this.

3.4 Activity Classification
After the segmentation of the CSI time series into activity and non-activity segments is completed, next, we
start the activity classification process. That is, for each activity segment, we need to recognize which specific
activity is performed. Here, considering the two different subcategories of the hand-based movements, namely,
wrist-based and finger-based movements, we propose a hierarchical classification model. That is, we first aim to
recognize the subgroup of the action performed and then we aim to recognize the actual activity type within
that subgroup. To this end, for the first step, we develop a binary classification model, and for the second step,
we develop two different intra-group activity recognition models. The goal of this hierarchical approach is to
develop a more scalable solution so that new categories of activities can easily be added later without having to
retrain the entire model again each time.
For each of these models, we design a machine learning classifier modelM using a Dense Neural Network

(DNN) architecture with four dense layers and we set the number of output neurons equal to the number of
classes to be recognized (e.g., two classes for the binary model that aims to recognize the subcategory). We apply
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(d) Fist

0 5 10
Time (seconds)

−40

−20

0

20

40

PC
 R
es
po

ns
e

0 5 10
Time (seconds)

0
2
4
6
8

10

Fr
eq

ue
nc

y 
(H
z)

(e) OK Sign

0 5 10
Time (seconds)

−40

−20

0

20

PC
 R
es
po

ns
e

0 5 10
Time (seconds)

0
2
4
6
8

10

Fr
eq

ue
nc

y 
(H
z)

(f) V Sign

Fig. 6. Line plots and spectrograms for the first principal component response showing unique repetitive patterns of different
hand and finger movements.

a dropout layer between each dense layer to prevent overfitting. Finally, we use the Adam optimizer to optimize
the categorical cross entropy loss function,

L(G,~) = 1
#

#∑
8=1

�∑
2=1

~8 [2] log
(
M(G8 ) [2]

)
whereM(G8 ) is the model prediction for input CSI G8 and ~8 is the one-hot encoded true class for the 8-th CSI
measurement. Training is performed on batches of size 1024 leveraging only the first 10 principal components
which are precomputed using PCA. An optimized model for the initial binary classification model is depicted in
Fig. 5 along with the evaluated hyperparameters. The other two models for specific and intra-group wrist and
finger action classification are similar to this model, except for different values of the hyperparameters. Note that
more complicated models can be considered for classification tasks in this case, however, our motivation is to
keep the models as lightweight as possible to fit them into edge devices.

3.5 Activity Repetition Counting
Once the CSI data series is segmented into activity segments and each activity segment is classified as one of
the finger or wrist activities, the next step is to count how many times the same activity is repeated within
each activity segment. To this end, we use the corresponding activity segment’s internal periodic behavior and
similarity.

In Fig. 6, we illustrate this periodic behavior through the line plots and spectrograms for the first PC’s response
for six different activities that we also use for our evaluations. Each subfigure clearly shows that there is a
repetitive signal pattern which is also confirmed to closely match with the number of repetitions of the activity.
Motivated by this relation, we then use the total number of local optima i.e., local maxima and local minima,
within the segmented region to count the number of repetitions of the activity. Here, note that the raw CSI data,
even after averaging over a selected number of principal components (shown as Avg. of PCs, % , in Fig. 7) can
include so many local optima points looking like noise. The repetitive averaging ([ times) method over an optimal
window size (l) can help obtain the signal pattern (i.e., %l ) that matches with the actual counts. However, this
averaging should be optimized for the counting specifically (i.e., preprocessing steps used for segmentation should
be performed again for counting). Moreover, as it is shown in Fig. 6, the repeating patterns of different activities
can be different thus the optimization model for getting the activity counts should be uniquely developed for
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Action Time (seconds)
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Local Maxima Avg. of PCs (P)

Fig. 7. Counting 10 repetitions of an action by identifying the total local optima within a specified activity segment after an
optimized number of repetitive window averaging.
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Fig. 8. Flowchart of the full system with optimization iterations.

each activity. Bringing all these together, we define the counting process (i.e., finding the total number of local
optima in %l ) after an optimized preprocessing (Algorithm 1) performed for each of the experimented actions.
For counting error, which is used during optimization of the model, we use the mean absolute error (MAE),

which is defined as:

E2 =
1
=

(
=∑
8=1

|Y8 − Ŷ8 |
)
, (2)

where Y8 and Ŷ8 are the actual and predicted number of repetitions of the same activity in the input CSI segment
8 , respectively.
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3.6 Hyperparameter Optimizer
Next, we elaborate on the process used to optimize the values of the hyperparameters used at different parts of
the proposed system. The optimization process is illustrated through a flow chart shown in Fig. 8, where each of
the segmentation, classification and counting processes is handled separately, but one’s output is used in the
other one as input.

To begin with, we get the CSI series (� ), set of the actions (A), true labels per CSI frame (f), and true counts
per action segment (^). For segmentation part, we use Algorithm 1, Algorithm 2 and Algorithm 3 in sequence
and predict the segmentation value, j , which is basically activity or non-activity label for each of the CSI frame
out of the provided CSI series, � . The values of parameters (e.g., window size (l), window multiplier (k ), group
of principal components (defined by dB and d), number of repetitive averages ([)) used in these three algorithms
are optimized through a Bayesian optimizer, which uses the true segmentation labels per CSI frame, f , and the
F1-loss of each prediction made to reach the best set of parameter values through several iterations (e.g., 1000
as used in our evaluations). Note that as our system has a specific and stable transmission (TX) frequency, i.e.,
100Hz, we can also calculate the duration of any activity or non-activity segment by dividing the total number of
CSI frames within that specific segment by the TX frequency.
For the DNN models used for classification as described in Section 3.4, we leverage Tree-structured Parzen

Estimator (TPE) as elaborated in [16] to optimize the hyperparameters. These parameters include CSI window
size (50 to 1000 CSI frames per window) passed to the model, number of hidden neurons ([25-500]), learning
rate [10−9-10], whether or not to apply kernel or activation regularization and the per layer dropout percentage
[0.0-0.9]. Note that for the proposed hierarchical model, we can train and perform hyperparameter optimization
for each sub-model independently of one another. Thus, this allows for greater control of the training process of
each sub-model and offers the ability to add or replace sub-models without affecting the prediction quality of the
rest of the hierarchical system.
Finally, in the counting part, we use a Bayesian optimizer as in the segmentation section, for the set of input

parameters (i.e.,l , dB , d and [) required towards obtaining the best counting accuracy. Note that this is performed
for each activity separately, as the periodic behaviors of different actions can be different due to the intrinsic
unique features of the activity. Each of these optimizations is run for 1000 iterations and the sets with the
least MAE, as described in Eq. (2), are saved as ^14BC . At the end of this optimization process, the best sets of
hyperparameters as optimized by the Bayesian optimizer (for segmentation and counting) and the TPE (for DNN),
are saved to provide validations with different data sets afterward.

4 EVALUATION
In this section, we start by describing the experimental setup and the data sets collected. We then evaluate
the performance of the proposed system through results regarding different individual components, namely,
segmentation, activity classification, and counting. We then evaluate the system as a whole and compare it to an
existing system.

4.1 Experimental Setup
To evaluate the proposedWi-PT-Hand system, we performed our experiments using a pair of ESP32microcontroller
units. These devices are low-cost and can be used to collect CSI data through the tool we developed recently [15].
One ESP32 is used in the TX role and the other in the RX role. The sampling rate is set as 100Hz. They are aligned
vertically in a box (with one side open), where the user’s hand performs the activities. The distance between the
TX and RX devices was 35 centimeters. The hand is placed in the line of sight (LOS) of the TX-RX pair. Fig. 9
shows the equipment setup. As shown in Fig. 9a, we wrapped the three surrounding walls and the bottom of the
box with aluminum foil to mitigate external electromagnetic interference from the environment and to minimize
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Fig. 9. Data collection box with (a) the locations of all components, (b) a display to show animated instructions/predictions,
(c) a camera to record the ground truths of segmentation, counting, and classification.
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Fig. 10. Experimental design with TX/RX pairs illustrated for two different categories of activities (a) hand and wrist
movements, (b) finger movements.

the impact on the optimized algorithms and machine learning models. A Raspberry Pi supported display is
placed inside the box to show instructions to the volunteer to perform specific actions during the data collection
session using our annotator app [33] in collaboration with our server app [18] to save the data from ESP32
inside the same Raspberry Pi device. This display can also be used to show predictions in a practical deployment.
Besides, a camera is placed to record the movements inside the box so that we can prepare the ground truths of
segmentation, counting, and classification. Fig. 10 shows the movements performed inside our setup.

4.2 Hand Movement Data Sets
We have collected CSI measurements for two types of physical therapy procedures (i) wrist movements and (ii)
finger movements. Throughout the evaluation section, we will mainly present the detailed results obtained for
the first volunteer’s data only. However, to show the generalizability of our system, we test the setup in five
different environments as shown in Table 3b and, as per Table 3c, with ten volunteers of age groups ranging from
19 to 67 years, of both male and female genders and with three types of hand conditions, i.e., normal condition,
wearing gloves, and wearing a wrist and thumb support given by physiotherapist to real patients. Overall, we
collected 20 different datasets2.

4.2.1 Wrist Movements. The wrist movements are pitch (P), yaw (Y), and roll (R) of the palm around the wrist, as
illustrated in Fig. 10a. These three movements are typically used to test the movement capability of the wrist
along three axes during physical therapy, respectively. The volunteer repeated each hand movement multiple
times for a specific duration measured in seconds. There were complete stops in between each successive action.

2These datasets and our codebase can be found in https://github.com/MoWiNG-Lab/wipt.
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(a) Activity durations and repetitions in training
(�1), validation (�2) and test (other volunteers)
datasets.

Dataset Reps. Action Dur. Session Dur.
D1 20 5 - 15 secs. 41.4 mins.
D2 4 5 - 15 secs. 8.1 mins.

Others 12 5 - 15 secs. 30 mins.

(b) Environments

No. Location
1 Conference room
2 Open lab area
3 Living room
4 Bedroom
5 Office room

(c) Categorical Variations of the
Volunteers

Category Variations
Age group 19 - 67 years
Male 7 volunteers
Female 3 volunteers
Conditions 3 types

Table 3. Information about the datasets

1 2 3 4 5 6 7 8

Time (minutes)

-2

-1

0

1

P True Segments Predicted Segments

1 3 4 5 6 7 8 9 10 11 1312 14 15 16 17 18 19 20 21 22 23 242

Fig. 11. Segmentation results with Local-Average (LA) method optimized/trained with dataset D1 and validated with dataset
D2 (i.e., D1/D2) yielding 90.27% per CSI frame segmentation accuracy and 100% segment detection accuracy.

4.2.2 Finger Movements. We consider small-scale finger movements as the next set of actions. These finger
movements are OK sign (O), Victory sign (V), and Fist (F) as illustrated in Fig. 10b. These finger movements are
specifically selected to cover the exercise of almost all the joints in the fingers of a human hand.

The collected data is divided into two, to be used in training and validation of our algorithms using these hand
movements. Table 3 provides an overview of these two sub data sets. In order to comply with a practical scenario,
the actions were performed in random order, and the duration of each action was varied within a specific range
of 5 to 15 seconds. The training dataset (�1) in this environment has 20 sessions of each of the six actions which
includes several repetitions of that action. The validation dataset (�2) has a similar setup but it includes 4 sessions
of each action. The training dataset has a total duration of 41 minutes and 25 seconds, and the validation dataset
has an entire duration of 8 minutes and 6 seconds. The data sets collected in different environments and/or with
different volunteers include 12 repetitions (each with 5-15 seconds) of each hand movement with a total duration
of 30 minutes.

4.3 Results
As Wi-PT-Hand system has different components (i.e., segmentation, classification, counting), as shown in Fig.1,
we evaluate the performance of each component separately, as well as the entire system’s performance. For the
Bayesian optimizers used in segmentation and counting parts, we use the implementation available in Matlab
2022a version [9] [12] [31]. We also use Keras library [11] to implement the DNN models used in the classification
part.

4.3.1 Activity Segmentation. Segmentation results are generated for both OA and LA methods in three different
ways. In the first way, we use the dataset D1 for both training (of the optimizer) and validation; in the second
way, we use the dataset D1 for training and D2 for validation; and finally, we use the dataset D2 for both training
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Table 4. Segmentation results through different methods and training/validation datasets

Method Train/
l k dB d [ W

Accuracy (%) by F1-Score Segmentation Number
Validate CSI-Frames Accuracy(%) FP FN Total

OA D1/D1 50 - 2 2 3 3 81.92% 80.57% 90.45% 14 9 241
OA D1/D2 84.65% 82.84% 83.67% 4 4 49
OA D2/D2 50 - 2 2 3 4 92.07% 91.03% 100% 0 0 49
LA D1/D1 100 19 2 2 5 2 91.41% 90.37% 97.51% 4 2 241
LA D1/D2 90.27% 88.94% 100% 0 0 49
LA D2/D2 50 27 2 27 10 7 94.89% 94.42% 100% 0 0 49

and validation. We consider these different ways to observe how the results change for our method in different
scenarios and how generalizable our results are even within one volunteer’s data.

Table 4 shows the segmentation results for all these different ways and different methods. Overall, LA method
in general can provide better segmentation accuracy than OA method, thanks to its varying and sliding window
based approach that takes into account local changes in the CSI data. In addition to the segmentation accuracy,
we also consider accuracy in terms of the percentage of the number of whole segments (including both the
activity and non-activity segments) correctly identified compared to the total number of segments (shown
under the “Total” column) in the validation data set. We consider the non-action segments being wrongly
predicted as action segments to be false-positive (FP) segments, while the action segments being wrongly
predicted as non-action segments are considered false-negative (FN) segments. If the number of total segments
is ( , the number of FP segments is (�% and the number of FN segments is (�# , then this accuracy is given as,
�B = (1 − ((�% + (�# )/() × 100%. The results in Table 4 show that LA method provides almost perfect accuracy
in all scenarios and it is much better than what is obtained when OA method is used. Since the D1/D2 case is the
most realistic scenario, we observe a clear difference there (100% vs. 83.67%).
In Table 4, we also show the optimized values of each of the parameters. The optimizer finds the window

size of 50 or 100 CSI frames as the most effective window size. The second and third principal components are
found to be the most significant ones yielding the best results regarding segmentation. The number of repetitive
averages is generally within the range of 3 to 5, while the merging factor performs better with lower values. It is
worth mentioning that the most time-consuming part of our system is the Algorithm 3. Therefore, the lower the
merging factor remains, the faster the system yields results.

In Fig. 11, we show the segmentation results specifically in D1/D2 case to visualize how the segments obtained
by the proposed LA method align with the actual segments. There are a total of 24 activity segments (and 25
static segments) and the LA method can recognize all of them at almost their exact boundaries. Therefore, even
in the case of the most realistic scenario, the system gives 100% whole-segment recognition accuracy, while the
accuracy per CSI frame detection is 90.27%. Note that, per CSI level accuracy will be affected even if the start and
end of the segment is slightly missed (e.g., 2nd, 13th, 14th activity segment in Fig. 11) in the prediction, while
it may not be very critical in practice. Thus, through an introduction of some flexibility around borders, this
accuracy can be further increased.
Once the start and the end of a segment are known, along with the specific transmission frequency (e.g.,

100Hz in our experiments), we can also calculate the duration of that activity or non-activity segment. In other
words, we can estimate the time a participant performs a given activity using the segmentation predictions. The
comparison of the actual and predicted duration is shown in Fig. 12, where, in general, we observe that the
predicted durations align with the actual durations of the segments. Note that the proposed system can identify
each individual segment in the validation dataset (as discussed in the segmentation results). However, as per
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Fig. 12. Actual and predicted durations per action segment using trained parameters with D1 and applying on the validation
dataset D2 (i.e., D1/D2).
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Fig. 13. (a) Confusion matrix for binary wrist-finger classification. Total accuracy: 96.44%. Confusion matrix when using an
individual ML model for (b) finger, total accuracy: 90.02%, and (c) wrist, total accuracy: 99.17%. (d) Confusion matrix obtained
from the entire hierarchical model. Total accuracy: 91.22%.

the CSI frame level prediction, there are some false ones at the edges of the segments, therefore the duration
estimation is not millisecond accurate. Also note that the Fig. 12 shows the comparison of duration results for only
the activity segments but we also observe the same for the non-activity segments, since the CSI data collection is
continuous and the non-activity segments complement the activity segments in our dataset.

4.3.2 Activity Classification. After identifying the start of a new activity segment, our system then performs
classification to predict the type of the activity. As it is described in the proposed system architecture, we use a
hierarchical solution for this task. That is, we begin with a binary classification to categorize the activity segment
as either a wrist or finger movement. Following this, we run a corresponding model to further classify the specific
wrist or finger movement within that category.

To understand the performance of this approach, we begin by looking at the confusion matrices in Fig. 13a-c
which represent the prediction accuracy of each model used in the hierarchical system. In Fig. 13a, the three
finger activities: fist (F), OK sign (O), and victory sign (V) are clearly categorized as “finger” activities while
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pitch (P), roll (R), and yaw (Y) are correctly placed in the “wrist” category with accuracies all much greater than
90%. Once the category is recognized, we then look at the intra-category recognition for both finger and wrist
activities separately in Fig. 13b which achieves an accuracy of 90.02% and Fig. 13c which achieves an accuracy of
99.17%. While there is a small amount of confusion between the predictions for the finger activities, this could
be due to small pauses between each activity which can be further improved through combining predictions
from proceeding time instances. Combining these three models into a hierarchical system, we achieve an overall
prediction accuracy of 91.22%. The confusion matrix for this scenario is given in Fig. 13d. One key observation
to be made with the use of the hierarchical approach is that if we add additional categories beyond finger and
wrist (e.g., arm movements), the category-specific models do not need to be updated and as such, the prediction
accuracy of these models remains the same.
Note that with a classical approach the activities could also be recognized through a single model, which we

evaluated to have an accuracy of 89.89%. However, unlike the hierarchical approach, if we plan to add more
categories (e.g., arm movements), we would need to retrain the model and due to model capacity, we would
expect the per-class accuracy to suffer. In our case, we observe that fist accuracy decreases by 3%, OK sign
increases by 3%, and the accuracy for the victory sign remains the same. However, if we compare the wrist
activities, the six-class model decreases accuracy for all three classes, i.e., 16% for pitch, 1% for roll and 10% for
yaw activities. For the yaw activity, this is particularly interesting since in the hierarchical approach, it achieves
100% prediction accuracy for both the binary wrist-finger classification phase as well as the wrist classification
phase. This demonstrates that the model loses some pattern-matching capacity as the number of classes increases
and demonstrates that the hierarchical approach can offer scalability when adding additional activity categories
to the system.

As soon as we identify the beginning of a segment, we can immediately begin running our activity classification
model pipeline on all incoming CSI samples. Obviously, not all of the activity classes achieve perfect accuracy.
However, since we can also recognize the ending of the segment, we can capture statistics detailing the frequency
that each class was predicted for a given segment which can then be passed through a majority voting scheme.
To evaluate this, in Fig. 14, we look at each of the segments in our evaluation dataset and plot the number of
samples correctly classified per segment. Overall, for all of the segments, more than 50% of samples are predicted
correctly, which means that majority voting would allow each segment to be predicted correctly 100% of the time
for all of the evaluated segments. Of course, a higher percentage of correctly predicted samples will ensure that
the model can continue to generalize on future CSI data. For example, with the six-class classifier, some segments
achieve as low as 58.95% correct samples. On the other hand, the three-class wrist classifier correctly predicts
more than 95% of all samples for each of the evaluated segments.
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Table 5. Comparison of different model sizes and accuracies obtained

Model Model Size (MB) Accuracy
2class 5.092

91.22%finger3class 3.084
wrist3class 8.731

6class 3.157 89.89%
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Fig. 15. Cumulative accuracy achieved when given a threshold for maximum model size.

Model Size: In identifying hyperparameters for each of the classification models, we do not directly consider
the model size. As such, the model sizes shown for each model in Table 5 vary without a direct correlation to
the number of classes that are predicted by the model. Furthermore, since our goal is to run our model on a
low-cost embedded microcontroller system, using a consistent and smaller model size allows for a faster inference
rate as well as ensures that the model can load completely in memory. As such, we apply a threshold for each
of the models in Fig. 15. As we increase the allowed model size threshold, we find that our optimal model
hyperparameters can end up in a local-optimal value, thus we plot the cumulative maximum accuracy for each
model. We can see that the six-class classifier suffers the most from decreasing the allowed model size resulting
in an accuracy of 54.15% even when given 500kB of model space compared to 77.69%, 96.23%, and 88.63% for
the three-class finger classifier, three-class wrist classifier, and two-class activity-group classifier, respectively.
Notice, by default, the ESP32 microcontroller we are using for CSI data collection is limited to a standard 520kB
of RAM [16]. Furthermore, the hierarchical approach allows us to automatically switch in the corresponding
model into RAM as needed compared to the six-class model approach which requires that all corresponding
model weights are retained in memory even if they are not important for the prediction. For example, some
weights of the model will be dedicated to finger-based movements while others are dedicated to wrist-based
movements. However, outside of our proposed hierarchical approach, there is no obvious approach to splitting
model weights per category for a pretrained model. This demonstrates that splitting our model training using our
proposed hierarchical method allows us to achieve better predictions within the memory constraints inherited
from embedded machine-learning environments.

4.3.3 Activity Repetition Counting. As the next step, for each recognized activity segment, the proposed system
aims to find out the number of repetitions of that activity performed within that segment. Our simple yet efficient
counting method is trained for each activity type separately. It looks for repetitiveness in the dataset using the
local maxima and minima on the optimized CSI time series data. Table 6 shows the mean absolute error (MAE) of
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Fig. 16. Linear regression on predicted vs. true counts per activity

Table 6. Per action counting results with optimal parameters (MAE 0.933 ± 0.88 for training and 1.37 ± 0.89 for validation).

Action l dB d [ Tr. Error Val. Error

Pitch 50 25 32 7 0.95 ± 0.83 0.75 ± 0.50
Yaw 50 21 32 8 1.15 ± 0.99 2.50 ± 1.00
Roll 50 25 2 6 1.05 ± 0.94 0.75 ± 0.95
Fist 50 29 32 6 0.75 ± 0.78 2.25 ± 1.25
V-Sign 50 29 32 6 0.85 ± 0.87 1.00 ± 0.82
OK-Sign 50 32 4 6 0.85 ± 0.87 1.00 ± 0.82

counts obtained for each of the actions using the optimized parameters on the training data, i.e., the sixth column,
as well as using the unforeseen validation dataset on the seventh column.
First of all, the results in Table 6 show that the optimized window size l is the same, i.e., 50 CSI frames, for

each type of activity. The number of optimized repetitive averages, [, is also very similar being mostly 6, but
slightly different for the pitch and yaw actions (7 and 8, respectively). Note that the number of sinusoidal peaks
mainly depends on these two variables, which is the base of our proposed counting method. On the other hand,
the groups of the principal components, as defined by dB and d , are found to be completely different from those
for the segmentation. The second and third principal components are found to be the most effective in identifying
the action or non-action segments as already shown in Table 4. However, the principal components from 21 to
60 are found to be effective for counting the action repetitions. The group of such principal components varies
for each of the six actions per the optimizer. The Eq. 2 is used to calculate the MAE of the counting method per
action. These errors are listed in Table 6. Linear regression lines with 95% confidence interval are plotted in Fig.
16 per action counting model and show that the models do pretty well on a foreseen dataset. The confidence
boundary gets thicker for the unforeseen D2 dataset using the D1 dataset’s optimized parameters. It can be due to
the lower number of samples in the D2 dataset. However, the validation errors are close to the training errors in
the case of pitch, v-sign, and OK-sign actions, while deteriorating more in the case of yaw, roll, and fist actions.

4.4 Overall System Evaluation
So far we have evaluated the components of our proposed system independently from one another. However,
since segmentation recognition, activity-group categorization, and activity-type classification tasks are calculated
per CSI sample, we can calculate an overall accuracy for our proposed system. Additionally, we can identify the
number of overall samples that failed any of the steps of our proposed system. We present two Sankey plots in
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(a) (b)

Fig. 17. Sankey plot: (a) Hierarchical model, (b) Single six class classifier.

Fig. 17a and Fig. 17b which show the percentage of samples that pass through each state of our system when
using our hierarchical model and the six-class classifier, respectively.

From Fig. 17a, we can see that there are four groups. First, we have all 100% of the collected CSI samples. Next,
we have segmentation which was successful 90.27% of the time (per CSI frame accuracy in Table 4 for LA with
D1/D2 case). The remaining 9.73% of samples are falsely identified as either activity or non-activity and as such,
they are marked as failed for the remainder of the plot. Next, we have the binary activity-group classifier which
fails 3.6% of samples. Finally, we have the activity classifier which fails around 10% and 0.83% of finger and wrist
activities, respectively. Overall, 82.2% of all CSI samples successfully pass through all of the components in the
system.
In the case of using the six-class classifier, as shown in Fig. 17b, we no longer separate the activity-group

prediction from the actual activity prediction. The segmentation part is still successful 90.3% of the time and after
classifying each of the six activities, we end up with 81.3% of activities passing successfully through our system
which is lower than the number of samples that were successfully passed through with the hierarchical approach.

Notice, however, that it is not necessary for all samples to successfully pass through the system to achieve
highly accurate rehabilitation exercise tracking statistics. By leveraging the segmentation start and stop points
along with majority voting, we can further improve the successful throughput such that all 90.3% of the correctly
segmented samples are successfully passed through the system. Specifically, while we may have a few anomalies
in our predictions because we do not necessarily use the results of our predictions in real-time, we can use
knowledge from the entire activity segment to inform our final predictions for all segments within the segment.

4.5 Generalizability of the Proposed System
In this part, we evaluate the generalizability and robustness of the proposed system using the other data sets
we collected with different volunteers (including some having different hand conditions) and/or in different
environments. We also evaluate how the proposed system performs with a new set of movements and discuss
the benefit of the hierarchical design.

4.5.1 New Volunteers and Environments. As described in Table 3 and Table 4, we also collected data for the same
types of hand movements from ten volunteers in five different environments. The summary of the results is given
in Table 7. The first row of the table shows the summary of the evaluation of the primary volunteer’s actions, as
elaborated in previous sections. The next rows show the results using the same optimal parameters or models
from the first data set for each of the other data sets, respectively. It can be seen from Table 7 that once the system
is optimized with one volunteer’s data, it works well enough for any other volunteer even if they are in different
environments with the same set of parameters.
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Table 7. Validation with other volunteer and environment combinations

Vol. Env. Acc. Segment Duration Counting Classification Accuracy (%)
No. Per CSI Detect. Error Error Binary Finger Wrist Overall Segment

(2 (%) (3 (%) (seconds) (MAE±Std.) �1 �5 �F � Level, �B

1 1 90.27 100.0 1.11 ± 1.97 1.37 ± 0.89 96.44 90.02 99.17 91.22 99.15
1 1 87.53 94.48 1.35 ± 1.88 2.34 ± 1.87 94.52 86.07 98.74 87.34 98.42
2 4 84.55 93.10 1.37 ± 1.76 1.45 ± 1.33 92.17 83.56 90.12 80.04 96.92
3 1 88.43 93.10 1.42 ± 1.53 2.15 ± 1.03 94.15 86.87 97.35 86.72 98.46
4 1 81.65 94.48 2.12 ± 1.23 1.45 ± 1.11 90.63 82.11 88.36 77.25 95.83
5 1 73.62 88.97 1.82 ± 2.39 2.26 ± 1.52 84.72 81.22 87.26 71.37 92.45
5 5 90.32 100.0 1.21 ± 1.56 1.91 ± 1.33 96.11 81.41 87.65 81.24 98.18
6 1 80.17 92.42 1.89 ± 1.74 1.69 ± 1.38 98.64 84.29 90.46 86.19 97.26
7 1 88.84 98.35 1.37 ± 1.28 1.45 ± 0.88 93.24 87.45 96.89 85.94 98.43
8 1 84.52 96.69 1.64 ± 1.21 1.58 ± 1.06 95.86 88.96 98.77 89.98 98.45
9 1 83.42 93.79 1.56 ± 0.57 1.29 ± 1.05 94.63 88.06 96.34 87.25 97.89
10 4 85.64 92.41 1.54 ± 1.28 1.66 ± 0.78 92.05 86.05 92.35 82.11 97.43
Average 84.91 94.82 1.53 ± 1.53 1.72 ± 1.19 93.60 85.51 93.62 83.89 97.41

Fig. 18. Per-segment classification results showing that with majority voting each segment can be classified to one class
accurately (even in the dataset that gives the worst case CSI level accuracy i.e., volunteer 3, environment 2 in Table 8).

Overall, we see 94.82% segment detection accuracy, average counting error of 1.72 ± 1.19 and a classification
accuracy of 83.89%. Here, note that the classification accuracy is per CSI frame, but if we consider segment-level
classification, the classification accuracy reaches 97.41%. This is computed by selecting a single class (i.e., highest
predicted) per segment through majority voting. As it can be seen in Fig. 18, this majority voting yields 100%
accuracy for action classification within each segment which makes the segmentation per CSI accuracy ((2 )
the actual classification accuracy for the action segments. As the predicted non-action segments can also have
mis-segmented CSI for actions, we also consider the overall classification accuracy (�) for those parts. In the
end, our segment-level classification accuracy can be calculated as �B ← (2 +� × (100 − (2 ). Such segment-level
classification accuracy per data set is shown in the last column of the Table 7 and Table 8.
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Table 8. Validation on special scenarios

Vol. Env. Speciality Acc.(%) Segment Duration Counting Classification (%)
No. Per CSI Det. (%) Error Error Overall By Segment
1 2 Multiple people 76.27 90.34 2.73 ± 2.18 1.58 ± 2.89 68.28 92.47
1 1 Wearing gloves 90.13 99.31 1.52 ± 1.84 1.83 ± 1.63 80.98 98.12
1 1 Wearing wrist-support 88.74 97.93 1.44 ± 1.73 1.44 ± 1.57 82.44 98.02
1 3 Wearing gloves 83.78 91.72 1.94 ± 1.66 1.89 ± 1.49 82.05 97.09
2 3 Wearing gloves 77.59 91.03 1.98 ± 1.55 1.84 ± 1.55 78.99 95.29
2 3 Wearing wrist-support 79.74 92.41 1.54 ± 1.78 1.93 ± 1.19 80.11 95.97
3 2 Multiple people 74.91 85.52 1.04 ± 0.94 1.52 ± 3.04 65.04 91.23
4 1 Wearing wrist-support 87.16 95.17 1.89 ± 1.09 1.29 ± 1.53 81.03 97.56

Average 82.29 92.93 1.76 ± 1.60 1.67 ± 1.86 77.37 95.72

While in some cases we see slightly lower results, especially for the finger and wrist action classification, this
can be considered acceptable as the finger and wrist movement varies for different people but the movement
detection as well as segmentation for moving vs. static environment evaluation remains the same. The fluctuation
of CSI amplitudes obtained in the proposed counting system also works almost the same for all volunteers. Per
activity results for all volunteers are also inline with the action-wise results given in Table 6 for the primary data
set. From all of these results, we can say that the proposed system, once optimized for the hyper-parameters with
any volunteer, is generalizable for data sets collected in different environments with different volunteers.

4.5.2 Special Scenarios. We also consider some special scenarios to test how the performance of our system
is affected. To this end, we first consider some hand conditions for the users such as wearing a wrist thumb
support, as this could be the case in practice for such patients. Similarly, while in this study we assume that
there is only one person3 monitored in the physical therapy session, it is possible that there could be some other
people around while the user is performing physical therapy exercises. Thus, we also consider such scenarios and
analyze the effect on results. The details of these special scenarios and the results with each of them are provided
in Table 8. Overall, we see a slightly lower average performance compared to the results in Table 7. As expected,
this is due to the effect of either the movements of other people in the environment or due to the hand conditions
of volunteers. However, the system’s performance can still be considered acceptable.

4.5.3 New Set of Movements. To evaluate the scalability of our system with different sets of movements, we
collected a data set with three new movements. Complicating the movements further, we consider physical
therapy exercises that include interaction with an object. These movements are (i) grip and pinch a hand therapy
ball, (ii) finger spread using a hand band, and (iii) drop and grab a hand therapy ball. Note that the hierarchical
design used in the classification part of the proposed system allows for developing a model for this new set
of movements without changing the models for other movements. We only need to retrain the activity group
classifier to recognize this new group. However, we do not need to change anything for segmentation and
counting. As a result, using the same optimized parameters for segmentation and counting, we still obtain similar
segmentation accuracy (84.36% per CSI and 93.10% detection accuracy) and counting error (1.79 ± 1.19). For the
classification, the retrained activity group classifier for the three groups provides 96.12% accuracy, and the action
classifier for this new group of three activities gives 75.57% accuracy. When we incorporate the previous two
3Monitoring more than one person through WiFi sensing [20] is more challenging and is out of the scope of this paper.
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models, i.e., wrist and finger classifiers, we calculate the overall classification accuracy with all nine actions as
81.61%. With the aforementioned majority voting idea, we then obtain a segment level classification of 97.12%.
This is quite close to the previous accuracy for six actions (i.e., 97.41% with two groups of activities), showing the
generalizability of the proposed solution to include new movements.

4.6 Comparison to Existing Systems
Among all the existing systems, the work of Chen et. al. [10] is the closest work to our study in terms of its
design. While it does not provide a counting component, its segmentation results look promising. On the other
hand, similar to all other datasets for segmentation studies, the dataset of this study is also for large-scale human
movements, like sitting down, standing up, walking, stooping, and waving. Thus, their approach is less likely
to suit our use case of small-scale movements like finger movements. However, for the sake of comparison,
we implement their approach with the Butterworth low-pass filter, PCA, and using their dynamic threshold
calculation and sliding window-based segmentation methods on our small-scale activity datasets. The threshold
weight parameter, U , is not properly introduced in their study, and the lengths of the two specific windows are
not well specified. Thus, we run the algorithm for different possible floating values ranging from 0.1 to 0.9 for U
and consider the value of 0.5 giving the best result. Besides, the threshold is described to be updated every two
minutes, which led us to consider the larger window size having two minutes of CSI data frames, i.e., consisting
of 2 × 60 × 100 = 12000 CSI frames of our dataset with 100Hz transmission frequency. The shorter window is
calculated to be one-sixth part of the larger window, as depicted in their segmentation figure. A major downside
of their segmentation algorithm is they calculate the start points and end points of the segments disjointly, which
leads to discontinuous segmentation in our dataset. Our implementation of their system can identify at best
17 starting points out of the 118 starting points of the action segments, while only nine ending points were
identified, yielding a very low accuracy. Therefore, it can be deduced that their system for large-scale movement
segmentation cannot be applied to our small-scale movement segmentation.

5 CONCLUSION
In this work, we proposed a non-intrusive, low-cost, and device-free WiFi sensing based physical rehabilitation
hand activity tracking system called Wi-PT-Hand. The proposed system considers small-scale movements like
wrist and finger movements and it can not only classify an activity but also can detect when, for how long, and
howmany times that activity is performed using only the ubiquitous WiFi signals around us. The proposed system
relies on prediction models and optimizers that can potentially run on edge devices with very low computational
capabilities, thus they can be deployable at scale. The extensive experimental results with varying scenarios
show that the performance of each component of the system as well as the entire system is promising and
robust enough to be used in practice. Considering that the patient activity (or therapeutic dose) is currently often
recorded manually by the rehabilitation specialist during treatment, there is a great potential to not only reduce
therapist burden, but also improve the fidelity of the data, which can then be used to develop new prediction
models to improve patient outcome, reduce length of stay, and reduce overall healthcare costs. Since the proposed
system only relies on WiFi CSI data and does not use any user specific data, it provides a secure and privacy
preserving solution. Moreover, the proposed system is a standalone solution, thus the collected data never leaves
the device (e.g., does not go to cloud or servers), providing additional privacy and the security. In our future work,
we aim to look at several extensions and explore the usability of the proposed system by actual patients.
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