Wi-PT-Hand: WiFi Sensing based Low-cost Physical
Rehabilitation Tracking for Hand Movements
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Abstract

This proposed system includes (i) segmentation of

Segmentation and Counting

We use Bayesian optimizer to optimize seven
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Activity Classification

Three optimized DNN models work hierarchically to with 1.11 sec. of
classify six actions, three each in two groups — wrist " mean absolute
and finger. Segmented CSI windows are passed as " error (MAE). 72 4 6 8 10 12 14 16 18 20
the inputs of the models. Aeton Seaments

ubiquitous WiFi signals around us. It also has potential to run
on low-memory edge devices due to using DNN model and is
easily scalable due to the hierarchical architecture.
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