Wi-PT-Hand: WiFi Sensing based Low-cost Physical Rehabilitation Tracking for Hand Movements

Team members: Md Touhiduzzaman, Steven M. Hernandez, Peter E. Pidcoe, Eyuphan Bulut | Faculty adviser: Eyuphan Bulut | Sponsor: CHRB |

Abstract

This proposed system includes (i) segmentation of the therapy time into activity and non-activity durations, (ii) recognition of the exercise performed in an activity segment, and (iii) counting of the number of repetitions of the same exercise performed within that segment.

What is WiFi Sensing?

In WiFi sensing, WiFi signals are used for sensing activities by multipath RF signal summation, several signal processing steps and classified by ML models afterwards.

Related Works

Existing studies propose either segmentation for whole body movements or classification, whereas we offer segmentation, classification and counting for subtle movements involving wrist and fingers.

Overview

We perform six hand physiotherapy gestures in a custom WiFi field using ESP32 microcontrollers, collect CSI, apply PCA & our developed three algorithms to get action segments & counts, and classify those actions by three DNN models.

WiFi CSI Data Collection

Activity Classification

Three optimized DNN models work hierarchically to classify six actions, three each in two groups – wrist and finger. Segmented CSI windows are passed as the inputs of the models.

Overall System Flowchart Juration Estimation Segmentation Classifier Wrist Duration of a Segment = #CSI_Frames / TX_frequency Predictions [ω, ψ, ρ_S, ρ, η, γ] = BayesianOptimizer() $[\omega, \rho_S, \rho, \eta] = BayesianOptimizer()$ Algorithm 1 (H, ω , ρ_s , ρ , η) Save Models & Params for Algorithm 1 (H, ω , ρ_{s} , ρ , η) Validation Algorithm 2 (P_w, ω, ψ) Local Min and Maxs Outputs: Algorithm 3 (χ, ω, γ) Xbest, T, M, Kbest End **Activity Fingerprints** (c) Yaw Action

Results: Segmentation

Our segmentation algorithms achieve 94.89% CSI frame-level (10ms resolution) accuracy and 100% segment identification accuracy.

estimate the action durations with 1.11 sec. of mean absolute error (MAE).

Actual	F	86%	6%	4%	19
	0	7%	92%	4%	39
	V	3%	1%	90%	19
	Ρ	3%	1%	1%	95
	R	1%	0%	1%	09
	Y	0%	0%	0%	09
		F	0	V Predi	F icti

Generalizability

one person.

Volunteer	Accuracy(%)	Segment	Counting	Classification Accuracy (%)			
Number	By CSI Frame	Identification (%)	Error	Binary	Finger	Wrist	Overall
1	90.27%	100.0%	1.37 ± 0.89	96.44%	90.02%	99.17%	91.22%
2	90.32%	100.0%	1.91 ± 1.33	96.11%	81.41%	87.65%	81.24%
3	80.17%	92.42%	1.69 ± 1.38	98.64%	84.29%	90.46%	86.19%

Conclusion

The proposed system considers small-scale movements like wrist and finger movements and it can not only classify an activity but also can detect when, for how long, and how many times that activity is performed using only the ubiquitous WiFi signals around us. It also has potential to run on low-memory edge devices due to using DNN model and is easily scalable due to the hierarchical architecture.

Mentor: Eyuphan Bulut

Results: Activity Classification

Our hierarchical classifier has an overall accuracy of 91.2%.

We have good accuracy in all three sections with several other volunteers after optimizing the hyperparameters only for